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Abstract
Errors in household finance survey data collection can lead to inaccuracies in population esti-
mates. Manual case-by-case revision has traditionally been used to identify and edit potential
errors and omissions in the data, such as omitted or misreported assets, income, and debts.
Selective editing strategies aim at reducing the editing burden by prioritizing cases through a scor-
ing function. However, the application of traditional selective editing strategies to household
finance survey data is challenging due to their underlying assumptions. Using data from the Spanish
Survey of Household Finances, we develop a machine learning approach to classify data during the
editing phase into cases affected by severe errors and omissions. We compare the performance of
several supervised classification algorithms and find that a Gradient Boosting Trees classifier out-
performs the competitors. We then use the resulting score to prioritize cases and consider data
editing efforts into the choice of an optimal classification threshold.
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1. Introduction

Under the Total Survey Error Framework, the job of the survey designer is to
minimize error throughout the survey lifecycle (Groves 2009). In addition to errors
related to representation issues (e.g., sampling and nonresponse errors), measure-
ment errors can also bias estimates of population parameters. The sequential pro-
cess of detecting and correcting measurement error is often referred to as data
editing (De Waal et al. 2011). Typically, statistical agencies and survey practitioners
allocate a significant portion of their resources to manually detect these errors. In
this context, selective editing emerges as a strategy to limit and prioritize manual
editing (De Waal 2013). By implementing an optimized editing strategy statistical
offices and researchers can save time and resources (Granquist and Kovar 1997).

A selective editing strategy involves fitting a score function to divide data into
two streams: the critical stream (data records to be edited manually or interactively)
and the noncritical stream (data records that do not require edits). To fit a score
function, the seminal papers of Hidiroglou and Berthelot (1986) and Latouche and
Berthelot (1992) propose to first predict an ‘‘anticipated value’’ using auxiliary vari-
ables for each unit-variable pair to construct scores. However, such anticipated
value models present several challenges. First, they often rely on strong assump-
tions, such as using values from previous past data as a proxy for the anticipated
value. Second, these models have not been tested within household finance surveys
or surveys whose main output are highly skewed population distributions or con-
tain a longitudinal component.

In this paper, we present a new selective editing application by using data from
the Spanish Survey of Household Finances (EFF by its Spanish acronym) and a
machine learning approach. We train a machine learning score function with a rich
dataset from the 2017 and 2020 waves of the EFF. We also exploit text data from
interviewers’ comments and clarifications introduced during the interview which,
to our knowledge, have not been exploited in the literature. Using the estimated
score, we separate cases into critical and noncritical stream groups, taking also into
account manual editing costs. Finally, we evaluate the prediction power of the
model using out-of-sample data not observed during the training phase, that is, the
subsequent 2022 EFF wave.

The data editing process in the EFF survey is conducted interactively and pre-
sents two main features. First, as stated in Barceló et al. (2020), manual editing
spans several months, hence, reducing the time devoted to it may produce eco-
nomic savings. Automatic data editing methodologies alleviate some of the costs,
through the identification of demographic inconsistencies which are easy to pro-
gram and identify. However, the detection of other type of likely errors such as
omissions, implausible values or inconsistencies is much harder to program exhaus-
tively and requires manual editing intervention. This is a challenge for data produc-
tion because errors may propagate and affect several variables along the interview
given the complexity of the questionnaire. Kennickell (2017) documents the reasons
why the production of household finance survey data is more challenging com-
pared to, for instance, business surveys. A second feature regarding the interactive
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nature of the editing process is that households are sometimes recontacted in order
to correct for potentially major errors, inconsistencies or omissions in the data,
increasing the respondent burden. This may lead to the occurrence of break-off,
which can affect data quality and survey inference (Peytchev 2009). Our goal is to
prioritize editing by predicting potential recontacts, thereby reducing both the
respondent and editing burden. The prediction of such characteristic resembles the
recovery of the influential error probability of cases. By estimating the probability
of recontact, we can divide cases into the critical and noncritical stream using a cal-
culated optimal threshold. We state the main challenges encountered and compare
the methodology against other selective editing methodologies. We also compare
our threshold selection methodology and its optimal value against other methods
of computing the optimal cutoff for dividing cases into two streams. Finally, we
interpret the results of the machine learning model by using SHAP values, a novel
framework that disentangles the main drivers of the scoring function.

The paper is organized as follows. In Section 2, we provide a literature review
on selective editing methodologies and the usage of machine learning techniques in
survey methodology. Section 3 motivates the present case study within the EFF
framework. Section 4 describes the data and methodology used to approximate the
recontact score function and the threshold selection methodology. In Section 5, we
present and discuss the results. We also briefly discuss the main features, caveats,
and extrapolations of this methodology in Section 6. Finally, in Section 7 we con-
clude and comment on future research.

2. Background

Survey data editing is often time-consuming and costly and takes a substantial part
of the data production process (De Waal 2013). In household finance surveys,
automatic data editing methodologies alleviate some of the costs, such as the iden-
tification of demographic inconsistencies which are easy to program and identify.
However, the detection of other type of errors, such as omissions, implausible val-
ues or inconsistencies, is much harder to program exhaustively. Measurement
errors may propagate due to the complexity of the questionnaire and this repre-
sents a challenge for the data production process. Errors in highly skewed data
have the potential to create serious distortions in the measurement of wealth distri-
bution (Kennickell 2006; Vermeulen 2018). Thus, on top of feasible automatized
processes, manual case-by-case revision has been so far applied in the EFF in order
to identify and correct potential errors and omissions.

So far, the available selective editing strategies in the literature focus on priori-
tizing cases based on their influence on some expected result. To measure influence,
the survey practitioner must have a sense of the true value to be edited, that is,
anticipated value. The anticipated value is used to construct the score that divides
the sample into two groups: the critical and the noncritical streams. An anticipated
value model can rely on a past value such as one coming from a previous survey
edition (Hidiroglou and Berthelot 1986). For example, it may be estimated from
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the mean or median of the target variable in a homogeneous subgroup of similar
units from a previous period (Latouche and Berthelot 1992).

After constructing the score, the survey practitioner should determine the cutoff
value to divide data records into the editing group (critical stream) and the non-
editing group (noncritical stream). In order to do so, the researcher determines the
effect of a range of threshold values on the bias in the estimated parameters of the
principal survey population. Survey methodologists have proposed variations to
this framework over time (Allard et al. 2001; Arbués et al. 2013; Gismondi 2007;
Hedlin 2003; Zhu and Godbout 2011). The literature tested selective editing strate-
gies in establishment, business, and census survey data. However, it is not trivial to
define what constitutes an influential error in household finance surveys
(Kennickell 2006). In this later context, predicting the probability of occurrence
and the possible size of influential errors seems promising.

In this paper, we introduce the application of machine learning models in the
selective editing literature. A machine learning algorithm is referred to as supervised
when it is trained based on a target value that is known for, at least, some part of the
data, which also enhances model evaluation. When a classifier is trained on such a
dataset, the aim is also to tune the parameters of the model in order to devise a classi-
fication algorithm that would work well in future data. In this setup, there is no prior
knowledge on which supervised machine learning model would perform better, thus,
one has to compare several classifiers. The set of algorithms includes classical
machine learning models such as Logistic Regression with regularization, K-Nearest
Neighbors (KNN), Support Vector Machines (SVM), and well-known tree-based
algorithms like Random Forests and Gradient Boosting Trees (XGBoost).

Recently, the application of machine learning techniques in survey methods
research has become more widespread. There is new research in forecasting panel
attrition (Kern et al. 2021), modeling unit non-response (Kern et al. 2019, 2021;
Toth and Phipps 2014), identifying errors in textual data (He and Schonlau 2021),
classifying coding errors (Schierholz and Schonlau 2020), and imputing data
(Dagdoug et al. 2021) have emerged. In general, these techniques are becoming
increasingly important in the survey data production process. To our knowledge,
we are the first to apply machine learning techniques into the selective editing liter-
ature. In this sense, we also contribute to the survey methodology literature by pro-
viding an empirical use case where we produce scores that allow for edit
prioritization. Our selective editing approach prioritizes cases based on their likeli-
hood of substantial errors and omissions that need to be corrected through the
recontact with the respondent, rather than solely with respect to certain expected
results from the data. Thus, this paper speaks to the micro-selection approach and,
particularly, the prediction model approach. For a comprehensive review of this
literature, refer to De Waal et al. (2011) and Granquist and Kovar (1997).

3. Case Study

The EFF is a longitudinal survey conducted by the Banco de España (BdE by its
Spanish acronym), which provides detailed information on households’ assets,
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debt, income, and spending since 2002. The population frame for the EFF sample
is the Continuous Population Register, where the units are households as defined
by their postal addresses. The survey performs stratified sampling based on infor-
mation from individual wealth and income tax returns categories held by the
Spanish Tax Agency which are oversampled progressively. Most questions in the
survey pertain to the household as a whole, except for labor and related income,
which are specific to each household member over the age of 16. The majority of
information refers to the time of the interview, although details on all pre-tax
income sources also refer to the previous calendar year.

Data collection is carried out through personal interviews with households
which are conducted by interviewers with specialized training and using computer-
assisted personal interviewing (CAPI) methods. In 2020, due to the pandemic con-
text, interviews were conducted by telephone (CATI). The EFF fieldwork typically
spans around nine months, starting in October of the corresponding wave year.
The final sample usually comprises around 6,300 households, with approximately
50% having participated in previous EFF waves (forming the panel component).
Oversampling of wealthy individuals accounts for approximately 12% of the top
1% of the wealth distribution. The average response rate is about 40% for the
non-panel component and 75% for the panel component. For a detailed overview
of the survey characteristics, including response rates, sample sizes, and other EFF
methodological details, please see Barceló et al. (2020) and visit the official website
(https://app.bde.es/efs_www/home?lang=ES).

In order to train a supervised machine learning classification model, one needs a
target variable that identifies the set of critical cases. In our use case, it is an indica-
tor variable constructed from past waves editing records. Throughout the data pro-
duction process, which begins immediately after the start of the fieldwork,
numerous data quality control and validation tasks are conducted. In addition to
many hard and soft checks performed by the CAPI to minimize various types of
errors (such as values out of range, implausible values, and inconsistencies), BdE
and the fieldwork company (FC) perform extensive manual editing of all com-
pleted interviews. Furthermore, interviewers’ work is closely supervised not only in
terms of response rates but also in terms of data quality. As part of the data pro-
duction, the data is edited by means of an iterative process with the FC, as outlined
in Figure 1. During the initial stage, the editing team at the FC reviews all

Figure 1. Recontact process in the EFF.
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completed questionnaires, identifies potential errors, such as implausible values,
coding errors, inconsistencies, monetary errors, and omitted information and intro-
duces editions in the production system. Comments and clarifications entered dur-
ing the interview by interviewers and audio records are useful throughout the
process. Given the significant impact that major errors and omissions can have on
the final data, the FC categorizes cases affected by severe potential errors which
cannot be solved with the available information—distinguishing between priority
cases and non-priority cases. Then, the team at BdE conducts a second revision of
the priority cases. It’s worth noting that BdE also revises many non-priority inter-
views from interviewers requiring close monitoring at the beginning of the field-
work to provide feedback and correct any interviewer protocol or conceptual
mistakes, although these do not need to a priority case. In cases where the BdE’s
revision of a priority case confirms potential errors or omissions that cannot be
solved with the available information, the BdE requests the survey agency to
recontact the household to clarify responses and collect important omitted
information.

The recontact consists of a phone call to the household respondent to conduct a
shorter questionnaire focused on the aspects that need revision or correction. The
EFF carefully considers the trade-off between obtaining additional information
and potentially bothering households on a case-by-case basis. One of the advan-
tages of recontacting households is the considerable reduction in the overall mea-
surement error of the survey. Additionally, it enhances the representativeness of the
sample, as fewer cases/questionnaires need to be discarded. The types of omissions
that typically lead to a recontact include unreported labor status, omitted income,
real estate assets or debts, incorrect valuation of businesses, and errors in household
composition, among others.

Once the editing finishes, the data comes to a imputation process that produces
multiple alternative values to correct for item non-responses (Barceló et al. 2020),
including missing values generated in the editing phase. Thus, data editing affects
imputation results.

4. Data and Methods

In this section, we describe the dependent variable along with the auxiliary dataset
employed for training and fitting the models. Then, we explain the methodology
used to train the models and the criteria employed to select the best training model.
We elucidate the process of selecting an optimal cutoff or threshold value for divid-
ing cases into the critical and noncritical streams. Finally, we discuss the interpret-
ability of our preferred model and evaluate the results using out-of-sample data.

4.1. Data

We use raw data and editing files from the EFF 2017 and 2020 waves. As explained
in Section 3, we train the models with a dependent dichotomous variable that takes
value 1 when a case had substantial potential errors or omissions that implied a
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recontact, and 0 otherwise. Table 1 presents the distribution of the dependent vari-
able in each wave.

Records from previous waves were executed by different editing teams, thus, the
dependent variable is not exempt from measurement error. Classification errors
may be a burden to train a model and predict with accuracy. In particular, changes
to revision and classification procedures across waves may compromise the useful-
ness of the dependent variable. However, in Subsection 5.4 we provide a series of
performance and validation metrics which support predictability and out-of-sample
validity of the model. In addition, there were instances where the editing team did
not reach households requiring a recontact or households did not want to answer.
Thus, we re-train the model taking into account those instances and show that the
predictability of the model is slightly worse. One could think that a model based
only on cases where values were corrected during recontact would be more interest-
ing. However, in the EFF, cases where households do not answer the recontact are
also edited when they present inconsistencies, while the solution might be assigning
missing values to the inconsistent variables. Of course, this might be specific of the
EFF where there is imputation of missing data. In addition, it is difficult to disen-
tangle which value change is due to the recontact or the standard revision of a case
in a successful recontact. We also study the relationship of prediction errors with
ex-post editing information. We deal with these issues in Subsection 5.5.

The explanatory variables are drawn from multiple datasets, primarily question-
naire responses, paradata, and metadata. Table 2 provides a description of each set
of inputs and Table A1 in the Appendix contains descriptive statistics for selected
variables. Based on the experience from EFF reviewers, household financial charac-
teristics usually offer valuable insights into identifying data problems, for example,
households with complex financial structures are more likely to necessitate follow-
up contact. In addition, interviewers with less experience and training in conducting
complex surveys tend to produce lower-quality interviews. Research by Bristle et al.
(2019) indicates that interviewer characteristics, such as education level and experi-
ence, may serve as good predictors of panel cooperation. Interviewers may also
influence household responses (Durrant et al. 2010; Flores-Macias and Lawson
2008). Furthermore, paradata, such as the time taken to answer a question, may
offer insights into data quality (Groves and Heeringa 2006). Our set of predictors
encompasses both household and interviewer-generated data and characteristics.

We include household data for questions formulated to every household but also
information that the editing team acknowledges was relevant in the manual identifi-
cation of recontact cases. Additionally, we exploit text data from interviewers’

Table 1. Distribution of Recontacts.

EFF17 EFF20

0 5,049 5,577
1 1,380 746
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comments and clarifications introduced during the interview with the CAPI soft-
ware, a novel source of data that, to our knowledge, has not been exploited in the
literature. Such comments are useful in the editing process as they help to decide
whether a question has been answered well or there is some error. We parse the
comments with pre-trained models from Honnibal et al. (2020), removing stop-
words, punctuation signs, alpha numeric characters, and others. Then, we apply
Porter (2001) stemming and produce word counts under a bag-of-words approach.
Finally, we select those words that are more present in each class (top twenty words
with highest relative importance within that class). After running several experi-
ments, we found that the extra complexity of other models based on TF-IDF
counts (Sammut and Webb 2010), did not improve the out-of-sample performance
of the model. We also generate other set of predictors from the text as described in

Table 2. Description of Explanatory Variables.

Source Variables

Household
information

Acceptance of being audio-recorded in certain parts of the interview;
whether the household is a panel unit or not; use of a proxy person to
respond the interview; number of household members; educational
level of reference person; main residence ownership regime; indicators
for holdings of unlisted shares, holdings of listed shares, holdings of
investment funds and holdings of fixed income investments; number of
pension funds; number of other properties on top of the main
residence; type of other properties; total estimated value of other
properties; number of debts, and number of businesses related to self-
employment.

Paradata Number of Euros (closed and interval) questions answered in ‘‘pesetas,’’
rates of item response of monetary questions, duration per section of
the questionnaire (in seconds), number of questions formulated more
than once per section, duration of multiple choice questions (seconds),
interviews executed by the interviewer at the time of interview,
indicator for interview made during the weekend, days from the start of
the field work, and dummy indicators for the slot of the day when the
interview is performed.

Comments from
the interviewer

Number of opened comments by interviewer, mean length of
comments, and top words from the NLP data pipeline.

Paradata filled by
the interviewer

Dummies indicating whether or not: the household was mistrustful
before and/or after the interview and the household showed interest
during the interview; number of people present when the interview was
held; the household consulted personal documentation during the
interview, and motives of acceptance of the interview.

Characteristics of
the interviewer

Number of previous survey waves, total seniority at field work
company, normalized score at the survey training program, participated
in ECF Survey (Survey of Financial Competences by the Banco de
España), and educational level.

Error indicators
and inconsistencies

Automated checks for questionnaire path problems and programmed
inconsistencies, informational content indicators. See Table A2 for
more details.
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Table 2. Lastly, we incorporate a set of automated indicators for errors and incon-
sistencies that have been used automatically identify some errors in the data, see
Table A2 of the Appendix for details. We also apply mean centering to the vari-
ables that change levels across waves, these are, the obtained interviewer evaluation
score during the interviewers training and duration of questions in seconds. The
reason for the latter is that the EFF2020 was performed using a CATI collection
mode due to the pandemic. Overall, our set of predictors consists of approximately
275 variables.

4.2. Training and Evaluation

We compare a set of classical machine learning models, Logistic Regression with
regularization, K-Nearest Neighbors (KNN), Support Vector Machines (SVM),
and the well-known tree-based algorithms—Random Forests and Gradient
Boosting Trees (XGBoost). The algorithmic capability increases in the aforemen-
tioned list, from simple linear models to non-linear and flexible algorithms that
exhibit improved performance in higher dimensional settings. The use of bootstrap
aggregation techniques with decision trees, also known as random forests, has
recently gained popularity in the survey research community (see Buskirk (2018)
for more details). Although neural networks may be a viable option, the literature
suggests that boosting and bagging techniques outperform neural net algorithms in
applications using structured data (Borisov et al. 2024).

In order to overcome the relatively small sample size of a test set, we design a
three-step process of training and evaluation to compare the models. To reduce the
potential bias introduced by seed initialization in splitting the training and test sets,
we perform the following three steps on ten different seeds and average the results:

1. We proportionally randomly split the dataset into 70% train and 30% test
sets by keeping the share of critical cases of the full sample in every
partition.

2. We fit the model with a five-fold stratified cross-validation strategy for
hyperparameter tuning in the training data. The cross-validation aims to
minimize the log-loss function or negative log-likelihood for binary data:

Llog(y, p)= � (y log(p)+ (1� y) log(1� p))

where p is the probability of being the critical class, y is observed target variable,
and log is the logarithmic expression.

3. We evaluate the performance of the model by computing evaluation metrics
in the test data.

In the process of training a machine learning algorithm, it’s necessary to split the
dataset to evaluate the classifier’s performance (Step 1). Step 2 involves fitting a
given classifier to the data. To accomplish this, a cross-validation strategy is used
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to optimize the classifier’s configuration by tuning its hyperparameters. We
employed a grid search optimization algorithm for the first three classifiers (i.e.,
the Logistic Regression Classifier, SVMs, and K-NN), and a random search algo-
rithm with a maximum of 2,500 iterations for the Random Forest and Gradient
Boosting Classifier. The tree-based algorithms explore spaces that generate at least
15,000 hyperparameter combinations. Therefore, randomly exploring a fifth of
these possibilities seems more than sufficient to avoid falling into a suboptimal
local space. In Table A3 we provide details about the hyperparameter strategies,
along with their hyperparameter space and search methods. We explored a wide
range of hyperparameters, and after numerous experiments, we determined that
the hyperparameters listed in Table A3 were suitable representations of both sub-
optimal and optimal spaces for each model. It has been established that in a high-
dimensional hyperparameter space, random search is a better approach than a grid
search (Bergstra and Bengio 2012).

In Step 3, we assess the performance of the classifiers using two evaluation
metrics averaged across the ten random seeds. The Receiver Operating
Characteristic Area Under the Curve (ROC AUC) serves to evaluate the perfor-
mance of binary classification models. It measures the model’s ability to distin-
guish between positive and negative classes by plotting the true positive (TP) rate
against the false positive (FP) rate at different classification thresholds and com-
puting the area under the resulting curve. The score ranges from 1, indicating per-
fect classification, to 0, with a score of 0.5 indicating that the model is no better
than random classification. The ROC AUC score is insensitive to imbalanced data-
sets, which is the case for this application. Thus, we also use a second metric, the
area under the curve (AUC) of the precision-recall curve. The precision-recall
curve plots the proportion of true positive classifications among all positive classi-
fications (precision) against the proportion of true positive classifications among
all actual positives (recall). Again, the AUC of the precision-recall curve ranges
from 0 to 1, with a higher value indicating better performance. The precision-recall
curve focuses on the positive class and is more informative in cases where recall is
more important than precision. This is the case in our application, as the increase
in false negative cases can lead to higher measurement error in the final data, while
the increase in false positive cases increases the revision time.

A comparison of the present use case against other selective editing use cases is
worth noting. Our goal is to classify cases into recontact or not, that is, to predict
a binary variable. This is distinct from other scoring models based on anticipated
values that often predict a continuous variable. Additionally, the output of our use
case produces a global score for each case. While in the selective editing literature,
scores are often computed variable-by-variable and then aggregated at a global
level for the whole survey sample (Lawrence and McKenzie 2000).

We also provide an out-of-sample evaluation of each model using data from
wave 2022. This allows us to compare the predictions of the best trained model
with the most recent manual classification made by the editing team. For that mat-
ter, the final score (or predicted probability of a household to be recontacted) is
the median across the ten fitted classifiers scores, as if one were inferring within a
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production environment. The reason to use the median in this context is twofold.
First, it is better to provide a single metric to the editing team as opposed to scores
for every seed in order to generate an efficient process of prioritization. Second,
the median is robust to outliers coming from potential data drifts in new data, that
is, changes in the data generation process from unseen and incoming new
questionnaires.

Finally, the computation of the models was implemented in Python (version 3.9)
and the main machine learning packages utilized were scikit-learn (Pedregosa et al.
2011) for all algorithms, training, and validation; and xgboost (Chen and Guestrin
2016) for the extreme gradient boosting algorithm. The Python codes for the com-
putation of the results are available through the Github repository https://github.
com/nicoforteza/eff_score.

4.3. Optimal Threshold

Once we choose the best-fitted classifier, we have to select the optimal threshold
that classifies cases into the critical and noncritical streams. Given the data imbal-
ance, a 50% threshold would not make sense since the predicted probability distri-
bution is left-skewed. On the other hand, there is a trade-off: increasing the
threshold results in a lower false positive (FP) rate but an increasing false negative
(FN) rate. False positives make the review team allocate additional time and
resources to revise a case that does not contain substantial errors or inconsisten-
cies. False negatives imply there would be left cases with substantial errors or omis-
sions. Let precision be the proportion of true positive classifications among all
positive classifications and let recall be the proportion of true positive classifica-
tions among all actual positives. In our setup, maximizing recall is relatively more
important than maximizing precision, that is, maximizing the detection of positives
while loosing precision at some degree due to increasing false positives. Thus, our
approach let the researcher choose the importance of recall relative to precision
rather than an arbitrary threshold or cut-off. The performance metric we use is the
Fb score of precision and recall,

Fb =(1+b2) � precision � recall

b2 � precision
� �

+ recall
ð1Þ

where b is the importance of recall with respect to precision. The maximization of
such evaluation metric provides an optimal threshold.

5. Results

This section presents the resulting performance metrics of the different classifica-
tion models that are used in order to select the best classifier. For the best model,
we present optimal thresholds as a function of the value b chosen by the researcher
or statistician. We interpret the results of the model by showing the most important
variables and how they relate to the prediction outcomes. In addition, we validate
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the predictability of the model in new out-of-sample data. Finally, we provide addi-
tional robustness analysis.

5.1. Best Model

As shown in Figure 2, the KNN classifier and SVM classifier are the worst perfor-
mers among the competing algorithms, with XGBoost, random forest, and logistic
classifier with Lasso regularization being the best performers, both in terms of
AUC-ROC and PR-AUC scores. This result supports the use of ensemble and tree-
based algorithms in tabular data, in line with Kern et al. (2019). XGBoost, with its
boosting feature, outperforms all other algorithms. The fact that the metrics for
PR-AUC are generally lower than those for AUC-ROC means that the algorithm’s
ability to detect positives (questionnaires masking multiple omissions, errors, etc.)
is lower than its ability to differentiate between the two classes.

Table A4 of the Appendix presents average evaluation metrics across the ten
seeds. In general, achieving high levels across performance metrics is challenging.
The fact that the ROC curve presents a level of 0.75 already implies that the mod-
el’s prediction is 50% better than that of a fully random model or, alternatively,
that it is 25% lower than a perfect fit model. The closest reference in the literature
to which we may compare our results is Kern et al. (2021); however, this applica-
tion faces a different classification task and dataset. In our use case, the data gener-
ation process depends on the extensive depth of the logical tree of the
questionnaire. This implies significant heterogeneity and variability in the data,
what is a challenge for any model to be able to generalize across multiple test sets.

Figure 2. Classifiers performance metrics.
Note. Box-plots of the Area Under the Curve (AUC) of the ROC and the Precision-Recall curve results for

each of the ten random initialized training partitions. The order in each block is the following, from left to

right; logistic regression with L1 regularization, k-nearest neighbor, support vector machine, random forest,

and XGboost.
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In our data, no two cases are the same in the entire sample. In fact, the number of
variables collected throughout the survey amounts to more than 7,500, exceeding
the number of observations. Additionally, interviewers and data editors introduce
further heterogeneity in the data generation process which we analyze in
Subsection 5.5.2.

5.2. Optimal Threshold

Table 3 presents, for different values of bs, the resulting precision, recall and Fb

values. For a full simulated grid of bs and corresponding Fb values, please see
Figure B1. Note that a higher value of Fb score does not necessarily imply a better
performance of the model, the relative importance assigned to occurrence of false
negatives matters for a conclusion, that is, cases that conceal important errors or
omissions that the model fails to detect. For instance, in a setup where optimizing
recall is more important than optimizing precision, b equal to 1.5, the resulting
optimal threshold is estimated to be approximately 0.14. This implies that the team
would assign cases with a score above 0.14 to the critical stream, which amounts to
40.1% of the sample.

By looking at Figure 3, one can observe the main implications of choosing dif-
ferent thresholds. The higher the score, the more precise the model is, that is, a
higher share of true positives for each bin. This means that sorting the completed
interviews according to the score yields a list of cases by their likelihood of recon-
tact, with a decreasing chance of entailing important errors as the score decreases.
Furthermore, as one reduces the threshold, the number of false negatives increases,
while increasing the threshold may end up in under-editing, where population para-
meters could be contaminated due to insufficient resources allocated to editing
efforts. The score is a tool for the editing team in order to prioritize editing. In the
previous example, for a threshold of 0.14, according to Figure 3 the editing team
would revise a total of 3,826 cases: 1,688 would be true negatives, 521 true posi-
tives, 1,502 false positives, and 115 false negatives. The associated recall and preci-
sion for the seed used in Figure 3 are 0.82 and 0.26, respectively.

Table 3. Optimal Thresholds for a Set bs.

b Precision Recall Fb score Optimal threshold Critical stream share

0.5 0.515 0.312 0.510 0.35 0.101
1 0.368 0.559 0.548 0.20 0.253
1.5 0.295 0.711 0.675 0.14 0.401
2 0.246 0.841 0.769 0.10 0.568

Note. The results are averaged over the ten test samples using the best classifier according to the

performance in the test samples, that is, the XGBoost. The results for Fb score refer to the maximum score

for a given b, according to Figure B1.
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5.3. Interpretability

One of the main drawbacks of using ensemble and tree-based algorithms is their
complex interpretability. According to Miller (2019), interpretability of a machine
learning model refers to the degree to which a human can understand the cause of
a decision made by the model. To interpret what factors or variables drive the
score, we use the SHAP (SHapley Additive exPlanations) framework developed by
Lundberg and Lee (2017). The SHAP value measures the impact of a variable on
the model’s prediction. The machine learning model’s prediction can be repre-
sented as the sum of its computed SHAP values, plus a fixed base value.

Figure 4a shows the most influential variables in the classification model accord-
ing to the mean absolute value of their SHAP values. The most important variable
is ‘‘days from start of the fieldwork.’’ The second most important variable is an
indicator for errors in the employment situation of any member in the household.
However, these results do not inform about the direction of the relationship
between the variables and the outcome, for example, are early interviews in the
fieldwork more or less prone to recontact? Figure 4b is a beeswarm plot of the
SHAP values for the top eleventh variables according to their mean absolute
SHAP values as in Figure 4a. For each variable, it shows the distribution of esti-
mated SHAP values, each dot is a SHAP value which is mapped to the associated
variable’s value; the lighter the dot, the higher the variable value as indicated by
the right-hand-side axis. A large and positive SHAP value indicates that the pre-
dicted probability of the critical class increases. For example, the top row displays

Figure 3. Distribution of a cross-tabulation of predictions against true values.
Note. This histogram represents the distribution of cases into true negatives, false negatives, true positives,

and false positives based on the comparison of the recontact flag attached by the model with respect to the

observed values from a particular test set, based on the selected trained XGBoost algorithm. Random seed is

10; hyperparameters are: number of trees (100), L1 regularization term on weights (a = 2), L2 regularization

term on weights (l = 4.3), initial prediction score of all instances (base score = 0.5), subsample ratio of

training observations (0.95), subsample ratio of columns when constructing each tree (0.5), learning rate

(0.3), loss reduction required to make a further partition on a leaf node (g = 0.14), maximum tree depth (6).
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the impact of the variable ‘‘Days from the start of fieldwork.’’ A darker color indi-
cate lower values of the variable which, in this case, means interviews made earlier
in the field work; yellow and light green state for higher values which mean

Figure 4. SHAP values for top variables: (a) highest SHAP values and (b) beeswarm plot of
SHAP values.
Note. In Panel (a) each bar represents the mean absolute value of each variable’s SHAP values for the trained

XGBoost for a given seed. Only the top eleventh variables are selected and sorted in decreasing order. In

Panel (b) each dot represents the SHAP value for every observation-covariate. The right-hand-side axis

represents the level of the covariate, that is, the lighter the color, the higher the value of the covariate. The

x-axis expresses the corresponding SHAP values (impact of that observation-covariate) in the prediction of

the critical class. Results are based on the selected trained XGBoost algorithm. Random seed is 10;

hyperparameters are: number of trees (100), L1 regularization term on weights (a = 2), L2 regularization

term on weights (l = 4.3), initial prediction score of all instances (base score = 0.5), subsample ratio of

training observations (0.95), subsample ratio of columns when constructing each tree (0.5), learning rate

(0.3), loss reduction required to make a further partition on a leaf node (g = 0.14), maximum tree depth (6).

158 Journal of Official Statistics 41(1)



interviews made later in the field work. Thus, interviews made earlier in the field
work tend to have a positive impact in the probability of being of the recontact
class. Interviewers are more prone to making mistakes at the beginning of the field-
work, and the data editors tend to find more cases that require a recontact during
this time. The dispersion among SHAP values means that the impact of the covari-
ates’ value on predicting the critical class is heterogeneous. For instance, for the
binary variable ‘‘employment situation error,’’ the impact of positive values is dif-
ferent for each household and this is because it depends on the interaction with
other variables. The number of questions about financial assets and businesses,
which is larger if the household hold more of such assets, is the third most impor-
tant variable, which implies that the higher the financial and businesses complexity,
the greater the probability of being recontacted. This is also the case for the dura-
tion of the set of questions on businesses and financial assets, which confirms that
wealth complexity positively relates to the probability of being the critical class.
The larger the number of completed interviews made by an interviewer at the time
of an interview, the lower the probability of being the critical class. The interviewer
experience and training score are also very important variables which are negatively
related to the probability of being the critical class. The results align well with
informal reviewer team expertise on the manual classification of cases into the criti-
cal class. In addition, an additional output that the application may provide is a
report about SHAP values on a case-by-case bases. This report may guide the revi-
sion process for the critical set, potentially further improving the efficiency of the
revision exercise. However, it is up to the reviewer team to evaluate whether this
kind of guidance improves or worsens efficiency.

5.4. Validation with EFF2022 Field Data

We also validate the model in out-of-sample data from EFF2022, that is, this data
was not used either for training or testing the model. The sample size is 6,338 obser-
vations. Table 4 presents performance metrics for the three main ML classifiers
which are the result of comparing the predictions of each model to the actual man-
ual classification made in EFF2022. The results indicate that the model generalizes
well based on the observed out-of-sample metrics. The ROC AUC score of 0.73
indicates that the fitted classifier does not overfit and can consistently make predic-
tions on new generated data (out-of-sample).The PR AUC is lower in the

Table 4. Evaluation Over EFF2022.

ROC AUC PR AUC

Gradient boosting trees 0.730 0.238
Logistic classifier 0.725 0.238
Random forest 0.711 0.239

Note. Area Under the Curve (AUC) of the ROC and Precision-Recall curve results for the predictions from

the median score of the ten trained models in the EFF 2022 out-of-sample data.
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validation exercise than in the baseline, however, the reader should note that this
metric is sensitive to data imbalances. In particular, in the validation exercise the
recontact rate is 10% while in the baseline is 16.5%. The relative increase in false
positives in the EFF2022 predictions affects precision which, together with the fact
that there is a lower rate of recontacts, decreases PR AUC. In contrast, the ROC
AUC accounts for the rate of false positives and false negatives equally, the ROC
AUC remains almost unchanged, which suggests the model maintains its discrimi-
native power across thresholds. It is important to note that there may be changes to
the questionnaire, editing techniques and guidelines in new waves. The editing team
also varies in terms of composition and experience, potentially affecting the manual
case-by-case classification of cases into recontacts. Thus, differences between in-
sample and out-of-sample evaluation metrics can be expected. Nonetheless, the
results indicate that the prediction tool is reliable across waves.

5.5. Additional Robustness

To address potential concerns regarding the relevance of the outcome, we present
an analysis based on an alternative outcome variable, which incorporates ex-post
information on the success or failure of a recontact. Additionally, we explore the
unexplained variance of the model.

5.5.1. Successful Recontacts. Recontacts can fail if the household respondent does not
want to answer any more questions or if households do not pick the phone. The
purpose of this exercise is to demonstrate the validity and robustness of the classifi-
cation model when using only cases that were effectively recontacted. It also may
be the case that a researcher is only interested in applying the classifier to those
kind of cases. Thus, we construct an alternative indicator for realized or successful
recontacts, which we use as dependent variable. A share of 89% of recontacts were
successful between 2017 and 2020. We retrain the classification model and evaluate
the steps, as outlined in Subsection 4.1, using this alternative target variable. Table
5 reports average performance metrics in the test samples of three different algo-
rithms trained with data of successful recontacts. The performance is worse than
that of the baseline classifier; the PR AUC and ROC AUC of XGBoost are 0.39
and 0.75, respectively, while that of the baseline model were 0.42 and 0.76. On top
of the better performance of the baseline classifier, an agile implementation of the

Table 5. Performance Metrics for Classification of Successful Recontacts.

ROC AUC PR AUC

XGBoost 0.749 0.388
Logistic classifier 0.737 0.359
Random forest 0.735 0.354

Note. Average Area Under the Curve (AUC) of the ROC and Precision-Recall curve over the corresponding

results of the ten test sample seeds.
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score increases the likelihood of a successful recontact, hence it makes more sense
to implement a model for all kind of recontacts.

5.5.2. Error Analysis. While we include hundreds of explanatory variables in the pre-
diction model, there are still prediction errors. In this section, we analyze in which
degree factors that cannot be used for prediction, but are available at the end of
collecting and editing the data of each wave, relate to the propensity of being the
critical class or not. To do so, we regress the log-loss prediction errors for the entire
training sample on interviewer, regional, reviewer or/and wave dummies, depend-
ing on the specification.

In Table 6, we present how adjusted R2 varies under different specifications.
Interviewer effects explain 4.5% of the variation in log-loss errors while reviewer
effects explain 15.7% of it. Wave effects do not play a role once taking into account
interviewer and reviewer effects. An interpretation of the results is that the classifi-
cation model is not capable of achieving better performance because there are
interviewer and reviewer effects that explain part of recontact classification, for
example, the reviewer team while doing the manual classification into the critical
class in past data introduced reviewer effects and there are interviewer effects on
top of all interviewer controls used included in the model. However, these factors
are unobservable and cannot be used for prediction. Manual classification tasks
usually carry human bias. A machine learning model which could incorporate
reviewer and interviewer effects would enhance performance metrics and reduce
prediction errors. However, this is out of the scope of this paper.

6. Discussion

There are several differences between our use case and other score function
approaches. Firstly, our method relies on a more flexible approach, as we do not
impose any restrictions on the score function for dividing cases into critical and
noncritical streams. In addition, anticipated value models seem not suitable for

Table 6. Error Decomposition of the Predictions.

Dependent variable

Log-loss error

(1) (2) (3) (4)

Interviewer effects Yes Yes Yes Yes
Regional effects No Yes Yes Yes
Reviewer effects No No Yes Yes
Wave effects No No No Yes
Observations 12,573 12,573 12,573 12,573
Adjusted R2 0.045 0.046 0.204 0.204

Note. Adjusted R2 from the results of the regression of log-loss prediction errors on interviewer effects,

regional effects, reviewer effects, and wave effects as indicated in each column.
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household finance data with a panel component because the financial situation of
households (and their composition) varies over time. In the absence of an antici-
pated value, one cannot disentangle the score into risk and influence factors. Our
threshold selection emphasizes resource allocation for interactive editing rather
than the impact of editing a subset of records on survey population estimates.

Overall, our proposed methods can be adopted in other financial household sur-
veys which can profit from revision flags indicating problematic cases and a suffi-
ciently large sample. However, incorporating human knowledge within a machine
learning training procedure is crucial to obtain interpretable and desired results.

The EFF is currently under pilot implementation of the score function estimated
in this paper. There are some challenges in order to do this. First, input and output
data files have to be harmonized in order to design an automatization procedure to
track cases across the field work stage. Second, it requires the coordination between
the FC and the editing team at BdE to efficiently exploit the score together with
other revision tools. Finally, it also requires the development of user-friendly docu-
mentation and visualization tools in order to describe and report the score, how to
use it properly and interpret associated data, as SHAP values.

A main drawback for future practitioners willing to implement this procedure is
the lack of an analysis accounting for the impact of selective editing on population
parameters. To make an evaluation of the effects of editing, it would be necessary
to impute missing values in alternative versions of the data, and potentially even
having to reweight the cases in some instances. This analysis is out of the scope of
this paper. However, there are simulation studies that measure the extent of the
impact of a particular threshold selection methodology on population estimates, or
that compute an optimal threshold value as described in Hidiroglou and Berthelot
(1986). Data editing alters the set of information used in imputing missing value,
however, Kennickell (2015) performed an exercise using the Survey of Consumer
Finances (SCF), the results support a selective approach to editing and indicate
that any resulting contamination of imputation is relatively minor.

7. Conclusion

We develop a novel application of machine learning in survey methodology that
applies to the editing process of the EFF. We look for the best predictive model for
detecting cases with substantial errors and omissions in raw data from question-
naires. By leveraging on revision data from previous waves, we train the models
and show that tree-based ensemble models outperform other models in predicting
substantial errors in the data. The resulting score function assigns a probability of
being the critical class to each questionnaire given a large set of covariates. We
show that the predictions align well with manual classification in different test sets.
As part of our application, we also provide a tool to determine the optimal prob-
ability threshold to classify cases into the critical class taking into account the rela-
tive importance of recall versus precision for the predictions, that is, the share of
false negatives relative to false positives that the statistical office or survey responsi-
bles tolerate.
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This application may provide an efficiency improvement for the survey and help
reallocating resources. For example, the free-up of resources may help understand-
ing other sources of error and feeding back to future questionnaire revisions and
interviewer training. Our application may be useful for survey practitioners, in par-
ticular, with surveys that can exploit information from previous revision and edit-
ing processes. The approach is especially useful in cases where there is limited
funding preventing massive manual revision.

Our paper opens several venues for future research. First, the use of audio fea-
tures collected during the survey could enrich the auxiliary dataset, as these fea-
tures have demonstrated usefulness in survey methodology and in manual revision.
Second, quantifying the impact of the score on the final data would be enlighten-
ing, this is not a trivial exercise as discussed in this paper. Finally, it would be inter-
esting to explore the usefulness of on-the-fly training of the models during the
fieldwork, as it may enhance performance by incorporating more data.

Table A1. Descriptive Statistics for a Set of Covariates.

Recontact EFF17 EFF20

No Yes No Yes

Asked Questions in Fin. Assets section Avg. 0.92 1.25 0.97 1.19
Std 0.56 0.79 0.49 0.68

Employment Error indicator Avg. 0.01 0.12 0.02 0.13
Std 0.12 0.32 0.15 0.33

Prior Interviews of interviewer Avg. 71.29 56.23 79.04 63.70
Std 55.06 50.12 59.03 57.82

Duration of Labor Situation Section Avg. 0.95 1.13 0.97 1.18
Std 0.53 0.60 0.42 0.54

Interviewer Seniority within Field Work Company Avg. 5.45 5.22 8.52 8.42
Std 6.35 6.60 8.50 8.93

Fin. Assets Duration Avg. 0.90 1.35 0.94 1.38
Std 0.73 1.11 0.77 1.26

Appendix A

Forteza and Garcı́a-Uribe 163



Table A2. Error Indicators and Inconsistencies.

Name Error indicator description (whether the household
or any member .)

Panel Error Panel households that don’t have any panel member.
House Mortgage Declare that the mortgage amount is higher than

main residence value.
House Mortgage Declare that the mortgage amount is higher than

the initial mortgage amount.
Other properties loan Declare that the other properties pending loan is

higher than the initial loan amount.
Main Residence Loan Term Declare that the remaining term is higher than the

initial declared loan term.
Other Properties Loan Term Declare that the remaining term is higher than the

initial declared loan term.
Main Residence Monthly Amount Declare that the monthly payment is higher than the

pending amount.
Other Properties Monthly Amount Declare that the monthly payment is higher than the

pending amount.
Rent Revenue Declare that the rent revenue is higher than the

property value.
Other Properties Inconsistency Declare that doesn’t have any other properties but

declares to have possessed other property in the
past twelve months.

Jewels Inconsistency Declare that doesn’t have any jewels or art but
declares to have possessed jewels or art in the past
twelve months.

Squared Meters Indicator Price of squared meter of property is too high.
Loan Monthly Payments Monthly loan payments is higher than all pending

loans value.
Loan Inconsistency Pending amount in loan is higher than initial value of

loan.
Loan Term Inconsistency Pending term is higher than solicited loan term.
Business Member Inconsistency Number of members that work on the family

business is higher than total number of family
business employees.

Stocks Inconsistency Owns stocks of the firm that he or she works at,
but the portfolio is not composed at 100% by these
stocks.

Dividends Inconsistency Yearly dividend yield is higher than whole portfolio
value.

Accounts Declares to have a financial account, but none in
particular.

Accounts 2 Declares that the number of accounts is lower than
the sum of the particular accounts.

Interest The interest rate of an account is higher than the
balance.

Investment Funds The value of the investment funds is not equal to
the sum of individual investment funds value.

Fixed Income Earnings The fixed income earnings is higher than the fixed
income portfolio.

(continued)
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Table A2. (continued)

Name Error indicator description (whether the household
or any member .)

Insurance Premium The insurance premium is higher than the insurance
value.

Insurance Valuation The insurance valuation is the same as the insurance
hedge for mixed insurances.

Revenue Growth The revenue growth in income is higher than
current regular income.

Employment history 2 Working years is higher than years with minimum
legal working age

Employment History Declared to have worked the year prior to the
interview, but worked less than twelve months.

Pension Young Declared to receive the pension from a very young
age.

Family Subsidy The household does not receive any family subsidy
but declared in other parts of the interview that
they were receiving help.

Monthly Income 1 Declared that the monthly labor income (employed
workers) is higher than the 50% of the previous
year labor income.

Monthly Income 2 Declared that the monthly labor income in kind is
higher than the 50% of the previous year labor
income in kind.

Monthly Income 3 Declared that the monthly unemployment benefit is
higher than the 50% of the previous year income
from unemployment benefits.

Monthly Income 4 Declared that the monthly labor income (own
account workers) is higher than the 50% of the
previous year labor income.

Monthly Income 5 Declared that the monthly pension (retirement or
inability) income is higher than the 50% of the
previous year pension income.

Monthly Income 5 Declared that the monthly pension (retirement or
inability) income is higher than the 50% of the
previous year pension income.

Monthly Income 6 Declared that the monthly pension (widowhood/
orphanhood) income is higher than the 50% of the
previous year pension income.

Monthly Income 7 Declared that the monthly income from grants and
scholarships is higher than the 50% of the previous
year pension income from grants or scholarships.

Business Profit Inconsistency Declared that the business profit is the same as the
perceived salary.

Full Time Employment Years The worked years full time are too high.
Never Worked Never worked full time but in other parts of the

questionnaire he or she did so.
Part Time Employment Years The worked years part time are too high.
Worked Years Employer 1 The years working and contributing to social

security are too high.
Worked Years Employer 2 Working years are too high.

(continued)
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Table A2. (continued)

Name Error indicator description (whether the household
or any member .)

Worked Years Declared that work or worked, but zero years in
part and full time worked.

Retirement Age The retirement age is too low.
Duplicated Payment Declared that an external person from the

household, help in the payment of a declared debt
(duplicated in different sections of the
questionnaire).

Credit Cards 1 Use more cards than they declared to possess.
Credit Cards 2 Use credit cards but any member has any financial

account.
Credit Cards 3 Use credit cards but any member has account to

make payments.
Bank Checks Issue checks but do not have any account.
Accounts Receive regular income but do not own any financial

account.
Debit Payments Debit payments but do not own any account
Internet Banking 1 Use financial services (retail banking) through

internet, but do not own any account.
Internet Banking 2 Are clients of a digital bank, but do not own any

account.
Expenditure Declare that food expenditure is higher than total

expenditure.
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Table A3. Algorithms and Selected Hyperparameters.

Algorithm Search method Hyperparameter Space

Logistic Regression Grid C logspace(21.5, 3, 10)
Penalty [‘‘L1,’’ ‘‘L2’’]

K Neighbors Grid K [3, 5, 7, 10, 15, 20, 30, 50]
Support Vector Machine Grid C logspace(21.5, 3, 10)

Kernel [‘‘poly,’’ ‘‘rbf’’]
Random Forest Random Min_samples_leaf [2, 4, 8, 16, 32, 64]

n_estimators [25, 50, 70, 100]
max_features [‘‘sqrt,’’ ‘‘log2,’’ ‘‘auto’’]
max_samples [0.6, 0.7, 0.8, 0.9, None]
max_depth [2, 4, 6, 8, 16, 32, None]
min_samples_split [2, 4, 6, 8, 16, 32]

Extreme Gradient
Boosting

Random g linspace(0.05, 1.5, 10)
n_estimators [100, 300, 500]
a linspace(1, 11, 20)
l linspace(1, 11, 25)
base_score linspace(0.1, 0.6, 10)
Subsample [0.5 + 0.05k | k = 0, 1, .,
9] colsample_bytree [0.5 + 0.05k | k = 0, 1, .
., 9] learning_rate [0.1, 0.05]
max_depth [2, 3, 4, 5, 6]

Note. The first column indicates the algorithm, the second the search method, and the third column

indicates the optimized hyperparameters for each of the algorithms. For each hyperparameter, the fourth

column shows the associated search space, following the documentation of the scikit-learn Python package,

which we use. Each search space is an array; they can be linear (using the function np.linspace),

logarithmic-scale (using the function np.logspace), or a manually set array of values. For instance, the

first row shows the Logistic Regression classifier hyperparameters that are being optimized: the C

(regularization strength, with a log-scale array of 10 values between –1.5 and 3) and the penalty type (either

a L1 (Lasso) or L2 (Ridge)).

Table A4. Evaluation Metrics of the Classifiers.

AUC-ROC Precision Mathew’s Corr. PR AUC

K Neighbors 0.670 0.286 0.069 0.293
Logistic Clf. 0.749 0.403 0.237 0.403
Random Forest 0.746 0.397 0.150 0.396
SVM 0.732 0.372 0.173 0.371
XGBoost 0.758 0.430 0.271 0.429

Note. Average evaluation metrics over the ten test sets results.
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Figure B1. Fb score—weighting scheme for XGBoost classifier.
Note. The heatmap shows the computed Fb score for a grid of different weights on recall (x-axis) and

threshold (y-axis). The results are the average across those from the ten random seeds. A set of selected bs

and corresponding optimal thresholds together with more metrics is presented in Table 3.
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