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Abstract

In recent decades, European municipal governments have developed anti-pollution

policies such as urban access regulations to mitigate the exposure of inhabitants to pollu-

tants. Given that population density translates into higher levels of exposure to harmful

pollutants, in this paper, we wonder about its translation to inhabitants in urban areas.

Using a granular-level geospatial panel dataset, we first provide estimates of the elas-

ticity between population density / economic activity and pollution exposure for the

European continent. Then, we quantify the effect of urban access regulations on pollu-

tion exposure in the context of an event study design. We find that the elasticity between

population density and pollution exposure is around 6% (half that in the US) and that af-

ter 5 years of an urban access regulation implementation, pollution exposure is reduced

by 2.5%.
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1 Introduction

Agglomeration economies are known to have benefits like productivity and amenities and costs such

as congestion or pollution (Duranton and Puga, 2020). Among these costs, pollution has recently

attracted some attention due to its negative impact on the health of city dwellers. According to the

latest report of the European Environmental Agency (EEA), at least 253,000 deaths in the European

Union (EU) in 2021 were attributable to exposure to fine particulate matter (PM2.5) pollution above

the threshold of 5 µg/m3 recommended by the World Health Organization. Moreover, the Europe

Green Deal and the zero pollution action plan set a target to reduce the health impacts of air pollution

(estimated by the number of premature deaths attributable to fine particulate matter (PM2.5)) by at

least 55% by 2030, compared to 2005. While a branch of the literature explores the increased effi-

ciency of cities concerning per capita pollutant emissions (Glaeser and Kahn, 2010), limited attention

has been devoted to investigating the relationship between agglomeration economies and pollution

exposure. Examining Figure 1, it becomes apparent that there is a potential relationship between the

spatial distribution of population (i.e., cities) and the spatial concentration of pollution in the same

spatial domain.

Figure 1: Spatial Distribution of Population and Pollution

A) Population B) PM2.5 C) Density vs. PM2.5

Notes: Data for 2019. Figures A) and B) are plotted for Albania, Austria, Belgium, Bulgaria, Croatia, Cyprus,
Czechia, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithua-
nia, Montenegro, Netherlands, North Macedonia, Norway, Poland, Portugal, Romania, Serbia, Slovakia, Slove-
nia, Spain, Sweden, Switzerland and United Kingdom using data as in section 2. Figure C) shows all cities in
2019 for the top 5 European countries by population. Experienced density is expressed in millions of persons.
As seen in C) there’s a positive correlation between experienced density and the pollution exposure. For more
info. about the data, please consult section 2.

It appears evident that densely populated areas, such as Madrid, London, the Netherlands or Paris,

have a higher concentration of pollutants. Indeed, panel C) of Figure 1 illustrates a positive correla-

tion between a measure capturing agglomeration economies (the so-called experienced density) and
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the population-weighted PM2.5 exposure for major cities in European countries. In response to EU

regulation, local governments throughout Europe have enacted Urban Access Regulations (UARs)

in recent decades. These regulations restrict the entry of vehicles including cars, trucks, lorries and

other vehicles with combustion engines such as diesel, into city centers. The primary goal of this pol-

icy is to diminish emissions and ease traffic congestion in the city center, albeit with the trade-off of

higher transportation and transaction costs for residents living outside the UAR-affected area. While

significant efforts in the United States have been devoted to quantifying the effects of ”clean air” reg-

ulations (Currie and Walker, 2019), Europe lags in research, especially in examining the combined

effect of economic activity (proxied by ambient population density) and UARs.

In this study, we first quantify the elasticity between economic activity and pollution exposure. Us-

ing PM2.5 as the pollutant variable, we rely on instrumental variables to examine the effect of such

density on the population-weighted PM2.5 exposure both between and within European cities. The

between-cities exercise directly assesses this effect at the city level, whereas the within-cities effect

measures the elasticity at the continent level, considering observed units as grid cells representing

1km2x1km2. Our findings indicate that the elasticity of economic activity on PM2.5 exposure at the city

level is around 0.06, while at the within-cities level, it is around 0.11. Methodologically, we employ

instrumental variables due to the absence of randomization in city exposure assignment. Geological

factors, such as soil quality, a là Combes et al. (2010), and the presence of aquifers as in Burchfield

et al. (2006), along with historical instruments pioneered by Ciccone and Hall (1993), serve as sources

of variation. These factors allows researchers to isolate the front-door path between agglomeration

economies and economic outcomes.

Secondly, we analyze the effect of adopting UARs on PM2.5 exposure, finding an elasticity of 0.027.

We gathered data through web scraping from a UAR data collection project to achieve this result.

Subsequently, we created a panel for all affected (and unaffected) countries and cities, distinguishing

between the control group (no UAR) and the treatment group (cities adopting UAR). At this stage,

we acknowledge potential bias in our results arising from inherent imbalance of the treatment (few

cities adopting the regulation vs. many non-adopting it). Additionally, the challenge of identifying an

appropriate control group is noteworthy, given the differences in observable variables between cities

introducing UARs (e.g., Barcelona, London, Lyon, Paris, Madrid) and those non-introducing them.

The treated cities in our sample exhibit higher population density and PM2.5 exposure, whereas

smaller, less dense and less polluted cities tend to abstain from adopting UARs. We acknowledge

that the results from this quasi-experiment are subject to several caveats, casting doubts on the causal

interpretation of the findings. Despite these considerations, there is indicative evidence suggesting a
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positive effect: the adoption of a UAR implies a 2.7% reduction exposure after 5 years of implemen-

tation. We derive this elasticity value using a dynamic difference-in-differences research design to

accommodate the staggered adoption of the treatment (Sun and Abraham, 2021).

These results have implications for various branches of the economics literature. Firstly, in terms

of data and measurement, the measurement of agglomeration economies and the extent of cities is

an active area of research within urban economics (Duranton and Rosenthal, 2021). To capture the

phenomena of agglomeration economies, we use a recently developed measure of density, the expe-

rienced density (Henderson et al., 2021; Duranton and Puga, 2020). Secondly, our study contributes

to the urban economics literature by using instruments for the population density in European terri-

tories (Combes et al., 2010; Borck and Schrauth, 2022). We provide robust evidence that these instru-

ments possess considerable predictive power.

Thirdly, our study is closely related to research examining the elasticity of population density and

PM2.5 exposure, with Carozzi and Roth (2023) being the most akin to our paper. We use the same

instruments, methodology and data type, albeit for a different territory. Another difference lies in

our use of ambient population (average number of people living above a grid cell over a 24-hour

period) for calculating the population density / economic activity, whereas Carozzi and Roth (2023)

uniformly spread US census population data across grid cells. Despite this difference, our estimates

are comparable to theirs, suggesting that our reported elasticity for the European territory is roughly

50% lower than that observed in the United States. The next logical step in this inquiry is to explore

the factors contributing to these differences. Another closely related paper conducted by Borck and

Schrauth (2022), uses global data to calculate global and country elasticities between population den-

sity and exposure to pollutants (PM2.5 and NO3). However, their study relies on less granular data,

with cells spanning an area of 10km, and is limited to observations from a single year. In contrast, our

analysis utilizes much finer-grained data spanning 14 years, albeit focusing on the European terri-

tory. Despite these differences, our estimates align closely with theirs. Moreover, Borck and Schrauth

(2021) compute these elasticities for Germany using ground pollution stations, obtaining an estimate

of 0.08, which also aligns with our estimate for Europe.

Fourthly, our study is also closely related to the active research field examining the impacts of low-

emission zones, zero-emission zones, and other UARs on several economic outcomes and their spillover

effects. For instance, Galdon-Sanchez et al. (2023) investigate the effects of Madrid Central, the UAR

implemented in Madrid in 2019, on several outcomes including pollution levels and economic activ-

ity. Their findings reveal a significant 19% decline in pollution, and a 21% reduction in consumer
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spending within the regulated area. The authors use a difference-in-differences approach to capture

these effects. Unlike our study, they have access to data detailing the delineation of the UAR. Other

papers have focused on driving policy restrictions. Blackman et al. (2018) studies the case for Mex-

ico, Blackman et al. (2020) for Beijing, and Leape (2006) explore the congestion charge in London.

Another closely related paper to ours is by Wolff (2014), which explores the effect of Low Emission

Zones in Germany. They find that the implementation of these areas resulted in a significant 9% de-

crease in PM10 levels. Conversely, alternative policies such as building ring roads or investing in

public transportation infrastructure did not lead to a decrease in pollution levels.

The remainder of this paper is organized as follows. In section 2, we provide all details about our

dataset construction, data sources, and considerations regarding the units of observation emphasiz-

ing the potential impact on results based on the chosen unit. In section 3, we address the different

econometric issues and strategies employed to address our research questions, including a discussion

on the rationale behind our instruments when relevant and valid. In section 4, we present the main

results, while section 5 conducts robustness checks for the reliability of our causal claims. Finally, in

section 6, we conclude with a summary of the key findings and discuss potential avenues for future

research.

2 Data

In this section we explain the data sources and outline the construction of our units of observation:

cities and grid cells (between and within datasets).

2.1 Cities

It is important to note that defining cities using administrative boundaries may introduce measure-

ment error (Duranton and Rosenthal, 2021). Therefore, to establish city boundarieswe rely on the

GHS Settlement Model layers (GHS-SMOD). This dataset delineates and classifies settlement typolo-

gies based on cell clusters’ population size, i.e., population and built-up area densities (Commission

and Eurostat, 2021). We specifically use cells flagged as urban centers, defined as contiguous grid

cells with a density of at least 1,500 inhabitants per km2 of permanent land and with at least 50,000 in-

habitants within the cluster with smoothed boundaries. Figure 2 depicts how this delineation works

in practice. As expected, big clusters of spatially concentrated economic activity are identified. We

use city boundaries based on 2020 data.
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Figure 2: Some European Big Cities Delineation

Notes: Ambient population data for 2021 using LandScan data. Cities delineation for this graph comes from
2020 data. Each pixel value is mapped to the population count and it represents 1km2. Note that these cities are
observed in panel A) of Figure 1: they are ”cuts” (clipped grids in the geospatial jargon) of panel A) with the
green delineation measuring the city extent.

2.2 Pollution

As our measure of pollution, we rely on PM2.5, also known as Particulate Matter (PM). PM2.5 de-

scribes fine inhalable particles with diameters that are generally 2.5 micrometers and smaller. These

particles vary in size and shape, composed of hundreds of different chemicals. Some are emitted

directly from a source, such as construction sites, unpaved roads, fields, smokestacks or fires. Most

particles form in the atmosphere as a result of complex reactions of chemicals like sulfur dioxide and

nitrogen oxides, which are pollutants emitted by power plants, industries and automobiles. We ob-

tained the spatial panel data from the European Environment Agency. This dataset provides concen-

trations of PM2.5 air pollutants on a 1 km grid combining air quality monitoring data in a ‘regression-

interpolation-merging mapping’ methodology and the observational values from air quality monitor-

ing stations used in the interpolation. Subsequently, we construct two panel datasets of the European

territory from 2007 to 2021. The first dataset, termed the ‘between-cities sample’ treats each city as

an observation. The second, referred to as the ‘within-city dataset’, represents each country-year

1km2 × 1km2 cell as an observation. For the between-cities dataset, we construct pollution exposure.

PM2.5 exposure (Yc) of city c is defined as:

Yc =
Nc

∑
i=1

Yci ×
Popci
Popc

(1)

where N is the total number of 1km2 × 1km2 grid cells within city c, Popc is the population of city c,

and Popci is the observed population of cell i within city c., i.e., the population weighted average of
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the exposure to PM2.5 in a given city. For the within dataset, we just proxy the exposure as the given

PM2.5 level (Yci) of that cell.

2.3 Density1

We use the Oak Ridge National Laboratory LandScan dataset (Sims et al., 2023) to get the density data.

This dataset measures the 24-hour average ambient population of the world. The lab constructs the

dataset with multiple techniques from geospatial science, remote sensing technology, and machine

learning algorithms. The spatial cells are 1km2 and are weighted and tailored to match the conditions

of the data and the geographical nature of each country/region. Importantly, each cell measures the

average number of people living / moving / staying within that cell over a 24-hour period. We be-

lieve this detail is a gain over other datasets which are constructed from official census information, as

it captures practical and accurate data in real-time. In contrast, the gain over other papers measuring

the elasticity between economic activity and pollution exposure is the ability of our dataset to better

capture agglomeration economies (Henderson et al., 2021).

We also compare two density measures (Dct in equation 2 in the next section). First, we use the

naive density, which is the population count of a grid cell. Given the 1km2 × 1km2 resolution of each

grid cell, the value for each grid cell represents the population density within that km2. Second, we

construct the experienced density. The central idea of this measure is to reflect the density actually

faced by the individual. Administrative boundaries (municipalities) sometimes have heterogeneous

sub-units of boundaries (counties) that differ in size, density and many other characteristics. This

classification of boundaries can induce measurement error when computing the spatial concentration

of economic activity. Roca and Puga (2017) and Henderson et al. (2021) proposed measuring the

experienced density by counting the population within a given radius around each individual. In this

paper, we set the radius to 10km. In general, this measure better captures agglomeration economies,

as it relates how close the average person within a city is to the concentration of economic activity

(Duranton and Puga, 2020).

2.4 Instruments

Following Combes et al. (2010), we introduce soil quality as a source of exogenous variation in pop-

ulation density, using data from the Harmonized World Soil Database (IIASA, 2023). Specifically, we

use multiple definitions of soil characteristics, including excess salts, nutrient availability and reten-

1Although for the sake of simplicity we call it ‘density‘, we actually refer to ‘spatial concentration of economic
activity‘
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tion, oxygen availability, rooting conditions, soil toxicity, and workability (see Table 9). Each charac-

teristic is measured on a scale from no limitations to very severe (or non-soil) limitations, providing

a comprehensive overview of soil quality. Table 9 displays the share of land by soil characteristic

and quality, with an annual average for all the countries in our sample. Additionally, We incorporate

historical population density at different lags or time periods, as detailed in the first four rows of

Table 8. As expected, historical population density grows over time. We downloaded the data from

the History Database of the Global Environment (Goldewijk, 2017). This dataset contains historical

population estimates, represented by maps of total, urban and rural population, population density

and built-up area. The period covered is 10000 before Common Era (BCE) to 2015 Common Era (CE).

Klein Goldewijk et al. (2017) describe how these estimates are calculated. Finally, we incorporate in-

formation on aquifer types in the European territory, using data defining six generalized classes of

potential groundwater resources with four grades of productivity in terms of general groundwater

yield (see Table 8). Highly productive porous aquifers are the most prevalent within a given city, on

average. For further details on this data source, see Duscher and Günther (2019).

2.5 Urban Access Regulations

We use webscrapped data to construct a panel dataset of urban access regulations along the European

continent, specifically gathering information from the Urban Access Regulations project.2 While the

project does not aim for comprehensive coverage of every urban area, it endeavors to include as

many cities and towns as possible. Table provides and overview of the affected countries by these

regulations. It is worth noting that only 12 out of 33 countries are affected by the regulations, and

within each country, the panel is markedly unbalanced, with treated cities representing a small share

of each country’s total number of cities. It’s essential to highlight that our dataset only includes

information on the city where the UAR is being adopted, and not the geographical boundary of the

regulated zone for each regulation. In comparison to studies like Galdon-Sanchez et al. (2023), which

uses the geographical boundary of Madrid Central (the main UAR established in 2019) to assess its

impact on several economic outcomes, out dataset lacks this key characteristic. This absence may

have consequences as the spatial distribution of economic activity and pollutant emission is crucial.

Consequently, studying PM2.5 exposure at the city level with the introduction of an exogenous shock

(the UAR) may not yield desired estimates, given that the inner boundaries where the UAR is applied

are within the city delimitation. Despite this limitation, there is some room for evaluating the impact

of UAR treatments.

2Data can be found in the following website: https://urbanaccessregulations.eu/
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Table 1: Countries with at least 1 city with any type of UAR

Regulation Mean Density Mean Exposure Regulation Start N. Cities

Austria No 73 700.82 14.50 7
Yes 988 967.80 16.68 2016 1

Belgium No 99 469.84 14.39 14
Yes 169 872.36 15.04 2020 3

France No 151 425.92 12.94 72
Yes 261 189.50 13.71 2017 7

Germany No 80 045.82 12.92 70
Yes 281 597.24 13.09 2013 32

Italy No 129 742.11 16.71 78
Yes 294 551.17 21.39 2019 10

Latvia No 25 360.93 13.41 2
Yes 294 011.33 15.71 2008 1

Netherlands No 80 584.58 13.67 38
Yes 1 171 691.13 14 2020 1

Norway No 33 897.35 7.38 5
Yes 325 846.33 10.33 2016 1

Poland No 94 090.11 22.41 60
Yes 187 307.63 17.74 2015 2

Spain No 93 175.56 12.33 80
Yes 2 223 144.57 13.65 2019 2

Sweden No 47 742.20 7.32 15
Yes 507 337.33 6.87 2020 1

United Kingdom No 95 297.46 10.98 137
Yes 963 319.26 9.31 2018 6

Notes: Yearly (2007-2021) averages.

We define the treatment in our quasi-experiment as the initiation of the first observed regulation

affecting a city. For simplicity, we do not distinguish between various types of regulations (such

as low emission zones, zero emission zones, charging schemes for vehicles, etc.), focusing only on

the intensive margin of UARs. Due to data quality issues, we assume also that subsequent periods

following the initiation of observed treatment for a given city will be considered as time periods with

treatment.

2.6 Controls

Table 6 presents the main descriptive characteristics of the controls used in our between-cities sample,

while Table 7 details those used in the within-sample. Climate related controls are sourced from

Cornes et al. (2018), using the E-OBS dataset. It is provided on regular latitude-longitude grids with

spatial resolutions of 0.1° and has a daily resolution. Covering a significant portion of the European

continent, from northern Scandinavia to southern Spain and north Africa, and extending from Iceland

to Russia at 40°E., the E-OBS dataset’s coverage dynamically changes over time due to fluctuations

in station scope. We use three variables -daily observations of temperature, precipitation and wind-
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initially aggregating them at the monthly level and subsequently at the yearly level. The daily mean

air temperature is measured near the surface, typically at height of 2 meters. Total daily precipitation,

including rain, snow, and hail is measured as the height of the equivalent liquid water in a square

meter. Wind speed is quantified as the daily mean wind speed at a height of 10 meters.

For trade-related variables, we use data from Natural Earth Data,3 an open source public domain

map dataset providing information on various geological features of the earth at varios resolutions.

This dataset includes physical data such as land, oceans, reefs, rivers, as well as boundaries and city

names. Using the coasts dataset, we define a city as coastal if its centroid is located within 50km of

the nearest coastline. Additionally, we calculate the distance to the closest coastline and the nearest

river, measured in km. Subsequently, we using an elevation European map,4 we compute the average

terrain ruggedness, as in Nunn and Puga (2012).

Finally, our last control variable focuses on the emission of pollutant power plants, and we obtain

the data from the Global Power Plant Database (Global Energy Observatory, 2018). We compute

the distance of each city to the nearest pollutant-emitting oil, coal, and gas power plants. However,

it is essential to acknowledge the potential introduction of look-ahead bias in our analysis, since

this dataset is constructed as of June 2018. Thus, for years beyond 2018, the assigned power plant

proximity for cities might not accurately reflect the current closest power plant. It is noteworthy

that climate-related controls are contingent on a yearly basis, trade-related variables are dependent

on city-centroid, and geological variables reamin static, given that the terrain slope does not exhibit

temporal changes.

3 Empirical Strategy

3.1 Estimating the elasticity of PM2.5 to population density

This section presents the methodological approach used to estimate the model parameters. Our base-

line method is Ordinary Least Squares (OLS), but we have the challenge that our main variable is

potentially endogenous. Thus, we switch to an Instrumental Variables (IV) method and present sev-

eral tests to show the relevance and validity of the instruments. Since our preferred method is IV, the

answer to the second research question on the effect of regulation on PM2.5 exposure only uses IV.

3Data can be found in the following website: https://www.naturalearthdata.com/.
4Data from the European Environmental Agency.
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3.1.1 Instrumenting the population density

When quantifying the elasticity between population density and pollution exposure, some confound-

ing factors arise. Urban residents tend to self-sort into city centers to benefit from the productivity

spillovers of agglomeration. Amenities, sectoral specialization, and other factors affect both popu-

lation density and pollution. In addition, there is some reverse causality when quantifying the elas-

ticity as households sort into locations where they are exposed to fewer pollutants (Heblich et al.,

2021). Therefore, using a naive OLS estimation to quantify such elasticity would entail a biased esti-

mation. To overcome this problem, we adopt an IV strategy, isolating variation in population density

uncorrelated with any part of the error term in the main estimation equation. In general, the suc-

cessful application of IV in urban economics over the past decades is well-documented (Card, 2001;

Baum-Snow, 2007; Rosenthal and Strange, 2008; Combes et al., 2011; Couture et al., 2018).

More specifically, we recover our desired elasticity β with the following Two-Stage Least Squares

(2SLS) method:

ln(Yict) = βln(Dict) + γ′
1Xict + α1c + δ1t + ϕ1ct + ϵict (2)

ln(Dict) = θ′Z + γ′
2Xict + α2c + δ2t + ϕ2ct + uict (3)

In the above equation, i corresponds to cells, c to countries and t to years. If we specify the equation on

the cells, its estimates provide the within-cities estimator. If we only consider the cities, the estimates

correspond to the between-cities estimator. Dct is the density, which will be adjusted in the first

stage. The specifications include several unobserved effects. First, country fixed effects (denoted by

α1c α2c) to control for state-level regulations with common impacts and or other characteristics such

as unobserved macroeconomic factors affecting the same pollution exposure in all observation units.

Second, yearly fixed effects (δ1t and δ2t) to control for any exogenous shock in the economic cycle,

again common to all countries/cities. Finally, the interaction country-year (denoted ϕ1ct and ϕ2ct) to

control for unobserved characteristics, which can affect pollution exposure at a country-year level.5

We exploit three potential sources of exogenous variation to adjust population density at the first

stage. First, we rely on soil quality, as in Combes et al. (2010). Soil can be an important determinant of

5Both, ϵict and uict can be decomposed into an unobserved time-invariant individual component (cell or city
effect) and a mixed error. We assume that the cell (city) effect is part of the mixed error and is uncorrelated with
the regressors in the corresponding equation.
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the existence patterns of cities, as its quality can influence the productivity of land (agriculture) and

thus can attract more people to exploit it. Second, we rely on historical population density as a long

lag instrument, as in Ciccone and Hall (1993). This instrument has been used very often in estimating

the benefits and costs of agglomeration economies for US, but not for Europe. To our knowledge, only

the work of Borck and Schrauth (2022) uses this instrument on a global scale, but at a lower resolution.

On the other hand, if we use the population density of 1800 AD, we assume that there is a sufficient

time lag between the pollution at the time of the pre-industrial revolution and today‘s main source

of pollutants. Moreover, this variable is highly correlated with the current population, especially in

Europe, where the dependence on the trajectory of cities is quite clear. Finally, the third instrument

is the presence of aquifers. Following Burchfield et al. (2006), we assume that urban expansion, and

thus population density, may be driven by the presence of aquifers, as urban developers can reduce

costs by connecting the water supply network to a natural aquifer.

The instrument related to soil quality is valid as long as there is some path dependence in the spa-

tial distribution of population and the current local pollution factors differ from those in the past

(Combes et al., 2010). To check whether the 1800 AD historical density is robust to multiple histori-

cal lags, we compare several historical population densities with our preferred one in section 5. We

argue that all these instruments are valid since they cannot directly influence PM2.5 except through

population density: neither subsurface characteristics (soil quality and presence of aquifers) nor 1800

AD population density can affect the average PM2.5 level in a present-day city.

We control for multiple observable variables (X vector in equation 2) that may influence PM2.5. Since

they are considered strictly exogenous, we use this set of variables in estimating population den-

sity at the first state (equation 3). We have encapsulated these controls into four groups. The first

includes weather-related variables: temperature, precipitation and wind speed. It might be the case

that weather conditions affect pollution levels. For instance, PM2.5 levels rise during summer periods

and dissapear during episodes of heavy rainfall or wind. It could also affect density, as the location

of homes is based on weather conditions (Rappaport, 2007). Second, we control for geological vari-

ables: latitude and terrain ruggedness. Terrain ruggedness refers to the average grid-cell difference

in elevation between a cell and the surrounding terrain (Nunn and Puga, 2012). Pollutants may be

concentrated in regions whose elevation is in valleys or riverbanks, as in the Po Valley. Third, trade-

related variables: if the city is coastal, the distance to the nearest water source. Following Carozzi

and Roth (2023), we use these controls to reduce bias in the first stage estimation of population den-

sity. Finally, we include a measure of the distance from a city of power plants open to pollutants,

either oil, gas, or coal power plants, to each city or grid cell. These possible emissions from power
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plants could also be causing the location of households sorting into denser places and the PM2.5 in

the environment.

3.2 The Effect of UAR on Pollution Exposure

We are only able to measure the effect of UARs on pollution exposure in our sample of cities due to

missing data that prevents us from integrating it properly into our cell dataset. We think that our

panel dataset on cities allows estimating the effect of the implementation of any regulation. To calcu-

late the effect of UARs on pollution exposure, we first use a simple difference-in-difference strategy

by adding the treatment term Tct in equation 4. We estimate the model, again, using TSLS with all

controls for fixed effects. In this sense, the parameters θcj capture the diff-in-diff causal effect. Since

we are dealing with a staggered treatment (cities adopt regulations at different times), the definition

of Tct must consider it. We are aware that not accounting for this heterogeneous adoption may lead

to biased estimates (Goodman-Bacon, 2021). For this reason, we use the estimator proposed by Sun

and Abraham (2021). The form of the equation of this dynamic difference-in-difference event study

has the following form:

ln(Yct) =
6

∑
j=−6, ̸=−1

θcjTct + βln(Dct) + γ′Xct + αc + δt + ϕct + ϵct (4)

where normalization is at t = −1 and we allow the impact of the UARs on PM2.5 exposure is mea-

sured by parameters θcj. Again, we adjust in the first step Dict using equation (3).6

4 Results

This section presents the main findings of the paper, structured into two subsections. Firstly, we

present estimations of how density affects pollution exposure, using several alternative specifications.

Secondly, we examine the influence of UARs on pollution exposure while controlling for density and

a wide specification of strictly exogenous variables.

6Equation (4) allows the causal effect of the introduction of UARs to be different in different countries, but we
also estimate a common effect, see Figure 3.
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4.1 Pollution and Density

The baseline results of our exercise consider that population density is exogenous, and to save space

we present in the first part of Table 10 in the Appendix the naive OLS estimation (equation 2 without

instrumenting density) between density and pollution exposure. We explore several specifications,

including all the controls described in section 3 and/or different fixed effects. We find that density is

significantly (at the 1% level) and positively associated with pollution exposure. In the fully specified

model, the coefficient is 0.028, i.e., a 1% increase in population within a given city implies a 2.8%

increase in PM2.5 exposure. However, it is important to recognize potential bias in the estimate, as

several factors suggest endogeneity issues related to population density. As discussed in section 3,

households may be strategically located in areas (such as suburbs) with lower exposure to harmful

pollutants. Additionally, omitted variable bias may arise due to households choice areas benefiting

from amenities and other positive spillovers of agglomeration economies. Furthermore, population

density could suffer measurement errors due to the uneven spatial distribution of economic activity.

Considering all these factors, we argue that IV estimation is necessary for correcting bias.

In the second part of Table 10, we can observe how the elasticity of the pollution exposure varies con-

cerning density, doubling its value in the fully specified model. Despite any remaining potential bias,

this suggests that naive estimation of spatial economic activity induces measurement error. Table 11

presents OLS estimates for the within dataset. The elasticity now stands at 0.046, considering the

entire European territory. If we believe that one of these estimates is consistent, a preliminary con-

clusion we can draw is that the magnitude of the bias in the elasticity between density and pollution

exposure ranges in the difference between 0.029 and 0.046.

Turning our attention to the IV estimation of the between-cities sample in Table 2, we observe notable

variations in the estimates across different specifications, each incorporating all controls and fixed

effects. Using the instruments of aquifer presence and historical density, the elasticity ranges from

0.033 to 0.11. This implies that a 1% increase in density is associated with a corresponding increase in

PM2.5 exposure within the range 3.3% to 11%. This substantial variation underscores the downward

bias present in the OLS coefficients, attributable to confounding factors influencing density and the

reverse causality between density and PM2.5 exposure. In panel 2 of Table 2, the estimated coeffi-

cients are now associated with the experienced density measure. Notably, the coefficient is significant

at the 1% level for both the soil quality and historical density instrument. The coefficient of density

remains significant at the same level with the rest of the instruments and its magnitude increases.

The historical density instrument notably achieves a higher F-Test statistic in the first stage estima-
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tion of equation 2. Also very remarkable is the similar magnitude of the coefficient when using the

experienced density measure, ranging between 0.056 and 0.06.

Table 2: Between Cities PM2.5 Exposure IV Estimates with Population

Soil Quality Historical Density Aquifier

Log (Population) 0.041∗∗∗ 0.033∗∗∗ 0.110∗∗∗

(0.003) (0.002) (0.024)
Weather Yes Yes Yes
Geological Yes Yes Yes
Water Yes Yes Yes
Power Plants Yes Yes Yes

Fixed Effects Yes Yes Yes

N 12,180 12,180 12,180
F-test (1st stage), Log (Population) 119.7 5,781.2 17.1

Log (Experienced Dens.) 0.054∗∗∗ 0.060∗∗∗ 0.060∗∗

(0.003) (0.004) (0.030)
Weather Yes Yes Yes
Geological Yes Yes Yes
Water Yes Yes Yes
Power Plants Yes Yes Yes

Fixed Effects Yes Yes Yes

N 12,180 12,180 12,180
F-test (1st stage), Log (Exp. Dens.) 106.6 2,837.9 20.8

Notes: Signif. Codes: ***: 0.01, **: 0.05, *: 0.1. Clustered (country-year) standard-
errors in parentheses. Fixed Effects: Country-year, country and year. Temporal cov-
erage: 2007-2021. Countries: Albania, Austria, Belgium, Bulgaria, Croatia, Cyprus,
Czechia, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ire-
land, Italy, Latvia, Lithuania, Montenegro, Netherlands, North Macedonia, Norway,
Poland, Portugal, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland
and United Kingdom .

All coefficients stabilize at around 0.06. We consider this shift in the coefficient plausible, given the

methodology used to calculate the experienced density. Furthermore, Table 12 in the Appendix re-

ports the results of all possible specifications. We note the robustness of the elasticity figure. It falls

within the range 0.041 and 0.054 when using the soil instrument (columns (1)-(4)), and is significant

at a 1% level. The same pattern can be observed for the aquifer instrument (columns 9-12) and the

historical density instrument (columns 5-8).

Comparing these estimates with those of other studies, remarkable similarities emerge. Carozzi and

Roth (2023), for example, conclude that their preferred elasticity is 0.14 in the between-cities sam-

ple for the US territory, using all geological instruments. Our estimated elasticity of 0.033, using the
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(comparable) naive density and the aquifer instrument, aligns closely with their findings. It is im-

portant to note that, despite being comparable, these estimates may differ due to variations in data,

geographical coverage, and periods used. In another study, Ahlfeldt and Pietrostefani (2019) report

an elasticity of 0.12.

Policy-makers may be interested in the historical trend of this elasticity. In Graph 4 in the Appendix,

we depict the country-year fixed effects of the second model in Table 2. We observe a diminishing

trend over the years, revealing some heterogeneity within the European continent. Less advanced

and/or smaller economies, such as BalKan countries (Albania, Serbia, Montenegro, Croatia) or some

Eastern European countries (Bulgaria), exhibit above-average effects of density on pollution exposure

of city inhabitants, with all other variables held constant. In contrast, Nordic countries (Denmark, and

Sweden) present the lowest fixed effect compared to other countries.

Table 3: Within Cities PM2.5 Exposure IV Estimates with Population Counts

Soil Toxicity Historical Density Aquifiers

Log (Pop.) 0.344∗∗∗ 0.142∗∗∗ 0.579∗∗∗

(0.021) (0.005) (0.028)
Weather Yes Yes Yes
Geological Yes Yes Yes
Water Yes Yes Yes
Power Plants Yes Yes Yes

FE: Country - year, Country and Year Yes Yes Yes

Observations 47,852,785 47,852,785 47,852,785
F-test (1st stage) 22,423.1 3,222,527.8 136,783.9

Notes: Signif. Codes: ***: 0.01, **: 0.05, *: 0.1. Clustered (country-year) standard-errors in paren-
theses. Fixed Effects: Country-year, country and year. Temporal coverage: 2007-2021. Coun-
tries: Albania, Austria, Belgium, Bulgaria, Croatia, Cyprus, Czechia, Denmark, Estonia, Fin-
land, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Montenegro,
Netherlands, North Macedonia, Norway, Poland, Portugal, Romania, Serbia, Slovakia, Slovenia,
Spain, Sweden, Switzerland and United Kingdom .

In Table 3 we can see the elasticities estimated using the grid cell (within) dataset. We observe that all

elasticities are significant at the 1% level, and the magnitude lies between 0.14 and 0.58. Our preferred

estimate in this context is derived from the specification using the historical density instrument. It

is important to highlight that, in the first column, we only use the soil toxicity characteristic as the

instrument for computational reasons.
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4.2 Pollution and Urban Access Regulations

We use the between-cities dataset to measure the effect of adopting a UAR on pollution exposure.

Looking at Table 4, we see that the effect of adopting an UAR is slightly negative, and is around 2.7%.

This means that, on average, after an implementation of a UAR, the exposure to pollution in cities is

2.7% lower.

Table 4: Treatment Effect of Urban Access Regulation on PM2.5 Exposure

(1) (2)

UAR -0.028∗ -0.027∗

(0.015) (0.014)
Weather Yes Yes
Geological Yes Yes
Water Yes Yes
Power Plants Yes Yes

FE Yes Yes

Observations 9,675 9,675
F-test (1st stage), Log(Pop. ) 5,655.3
F-test (1st stage), Log (Exp. Dens.) 3,056.2

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1. Clustered (country-
year) standard errors in parentheses. Fixed Effects: Country-
year, country and year. Temporal coverage: 2007-2021.
Countries: Austria, Belgium, France, Germany, Italy, Latvia,
Netherlands, Norway, Poland, Spain, Sweden and United
Kingdom

Next, looking at panel A of Figure 3, we see that this is effect is only significant at the 4th and 5th lag,

with the level of the former (2.5%) matches the effect of the previous reported treatment ( 2.7%). In

panel B, where we only look at exposure levels (without taking logs), the effect appears to be slightly

more significant, again reaching its maximum significance at the 4th and 5th lags. This means that

the effect of the introduction of UARs is not short-term but long-term, and could have many political,

environmental and health implications.

Note that, as we saw in Table 4, the panel is quite unbalanced. Looking at Figure 5 in the Appendix,

we observe that those countries with a larger number of treated cities, like Germany, have a signifi-

cant and negative effect of adopting any UAR. In fact, within this country, there are 32 treated cities

out of a total of 102. Furthermore, the parallel trends assumption seems to hold at the light of the

pre-treatment effect. If we look, for instance, at Italy, we see that the effect is also negative, but the

parallel trends assumption does not hold. Sweden may also be another interesting country to ana-
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Figure 3: Dynamic Difference-in-Differences Event Study

A) Log(Exposure) B) Exposure

Notes: Panel A) shows the effect of adopting any UAR on the logarithm of population weighted cities exposure
(see equation 1), and panel B) the exposure, after controlling for all possible controls detailed in section 2, and
city, country, year and country-year fixed effects. We use the between-cities dataset for running this exercise and
we exclude from the sample countries that never adopted any UAR in any city.

lyze. However, its control group is much larger than the treatment group (1 in 8 cities adopted some

municipal regulation), so it is very difficult to draw sensitive conclusions.

Overall, although the event study does not shed much light, mainly due to data limitations, we be-

lieve that there is evidence to hypothesize that UARs do indeed reduce PM2.5 exposure. In our

exercise, this constitutes more of a signal of correlation than causality because of two main draw-

backs. First, our data on regulations is not official and so we are not sure about its quality. Second,

we do not observe the past recent years (2022 onward). Publishing geospatial data takes time and the

institutions that produce them are in constant research. Therefore, estimating the impact of adopting

a UAR with so little historical data is very challenging. Furthermore, since the control and treated

samples are not balanced, we should be cautious in interpreting the estimate as a causal impact since

confounding factors could bias it. However, we believe that our attempt is a first step in providing

an estimate in an active area of research, albeit with much room for improvement.

5 Robustness Analysis

This section presents some checks to assess the robustness of our instruments. We explore different

specifications and employ alternative instruments for testing purposes. In particular, we use his-

torical and experienced density measures to provide additional evidence of their informativeness in

capturing agglomeration economies in our context. The first set of results employs historical density
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as an instrument at different time lags in the first stage, as illustrated in Table 5. More specifically, we

use the historical density figures of 100 AD, 1000 AD, 1500 AD, and 1800 AD.

Table 5: PM2.5 Exposure IV Estimates Robustness: Historical Densities

100 AD 1000 AD 1500 AD 1800 AD

Log (Experienced Density) 0.074∗∗∗ 0.077∗∗∗ 0.070∗∗∗ 0.060∗∗∗

(0.007) (0.005) (0.005) (0.004)

Observations 12,180 12,180 12,180 12,180
F-test (1st stage) 1,387.3 1,409.2 2,075.6 2,837.9

Log (Pop.) 0.221∗∗∗ 0.190∗∗∗ 0.169∗∗∗ 0.142∗∗∗

(0.007) (0.006) (0.006) (0.005)

Observations 47,852,785 47,852,785 47,852,785 47,852,785
F-test (1st stage) 1,250,670.5 1,973,644.1 2,696,604.7 3,222,527.8

Weather Yes Yes Yes Yes
Geological Yes Yes Yes Yes
Water Yes Yes Yes Yes
Power Plants Yes Yes Yes Yes

FE: Country-Year, country and year Yes Yes Yes Yes

Notes: Signif. Codes: ***: 0.01, **: 0.05, *: 0.1. Clustered (country-year) standard-errors in parentheses.
Fixed Effects: Country-year, country and year. Temporal coverage: 2007-2021. Countries: Albania,
Austria, Belgium, Bulgaria, Croatia, Cyprus, Czechia, Denmark, Estonia, Finland, France, Germany,
Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Montenegro, Netherlands, North Mace-
donia, Norway, Poland, Portugal, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland
and United Kingdom .

These results directly confirm the relevance condition of the instrument, indicating a clear correla-

tion between cities’ experienced density in 100 AD and the current experienced density of cities.

Furthermore, recognizing that the impact of past density, operating through present density, on pol-

lution exposure, might be subject to the influences of economic growth, we introduce trade-related

variables - specifically, the group labelled ‘water‘ in all regressions - to account for this effect of the

business cycle.

Also, examination of the Table 13 in the Appendix reveals significant estimates of the elasticity across

different specifications of the soil quality instrument. In the first row, the elasticity is calculated in-

crementally for various soil characteristics by progressively adding each distinct soil quality to the

specification. Note that the elasticity of 0.054 in column 7 aligns that of the model in Table 2 when the

experienced density is used.

If larger cities display higher pollutant concentration, it raises the possibility that the city size/area
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could act as an important confounder between economic activity concentration and pollution concen-

tration. To assess whether the positive elasticity is driven by population size, we present estimates

in Table 14, controlling flexibly for population using polynomials of the total sum of the population

in a city and city area, similar to Carozzi and Roth (2023). As a final robustness check, we analyze

whether the joint inclusion of the historical (1800 AD) and the aquifer instruments is significant and

determines the magnitude of the elasticity. The results are displayed in Table 14. Using both histor-

ical density and the presence of aquifers as instruments yields an elasticity range of 0.059 to 0.062.

Subsequently, after incorporating polynomials of the total population, the elasticity estimates do not

significantly differ from those reported in tables 2 or 12, suggesting that results are not being driven

by city size alone. Surprisingly, the sign of the elasticity changes only when adding a third polyno-

mial. However, we argue that the third polynomial could lead to overfitting of the model. Overall,

urban sprawl does not appear to be a driving factor, as the same explanation holds when examining

the results of the second row of Table 14.

6 Conclusion

We planned in this study to answer two research questions. First, we like to estimate the elasticity

between population density and pollution exposure in Europe. We did so at the country, city and

more granular level with data for 1km2 × 1km2 cells, trying to highlight both the differential effect

between and within cities. Second, we try to analyze the effect of the introduction of UARs on the

volume of PM2.5 in some cities to mitigate the exposure of inhabitants to pollutants. The detection of

effects of population density on pollution levels can have several direct and/or indirect consequences,

e.g., on mortality and morbidity. It can also lead to unequal consequences on individuals, in terms

of health as well as income, to the extent that they live and/or work and have to move to locations

where pollution exposure is higher. The introduction of environmental policies as UARs can avoid

premature deaths and morbidity thus reducing health costs and, potentially, contributing to reducing

inequalities.

For the analysis of the two questions, we compiled geographic and spatial data taken from multiple

sources: 1) A sample of cities with a set of variables that characterize them, enabling exploration of

the effects between cities (between-cities analysis). 2) A sample consisting of 1km2 × 1km2 cells rep-

resenting the European territory across 33 countries, allowing for analysis of internal city variations

(within-cities analysis). 3) Data detailing the location and timing of UARs introduction in the EU.

The exercise faces several methodological challenges. Firstly, there is a concern that population may
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be endogenous, necessitating the identification of relevant instruments (correlated with population

density) and exogenous instruments (uncorrelated with the error term of the model). Secondly, there

is difficulty in identifying suitable controls to estimate the causal effect of UARs on pollution ex-

posure. Given that regulations during our sample period primarily affect large cities and not small

cities, constructing a balanced sample (in terms of observable variables) becomes challenging, making

it uncertain whether the estimate truly reflects the causal impact of the regulation.

In relation to the first research question, we find that there is a significant and positive effect of den-

sity on pollution exposure, with our preferred estimate showing an elasticity of 0.06. This estimate

is 50% lower than the reported elasticity in other studies for the US, indicating potential differences

in agglomeration economies and their externalities and spillovers across regions. We believe that this

discrepancy presents an intriguing area for further investigation, warranting exploration into the un-

derlying reasons. It would be interesting to examine whether differences in industry composition or

land use contribute to varying spillover effects between regions. Additionally, exploring the inclusion

of historical sources of pollution, such as power plants, may provide insights into these divergences,

although we suspect that this may not be the primary source of uncertainty in our estimates.

Concerning the second research question, we find that the adoption of a UAR has a slightly significant

and negative effect on pollution exposure, estimated at about 2.7%. The main drawback of estimating

this effect is twofold. First, our data sourced from a privately-held project lacks official validation,

raising concerns about data quality. Second, the absence of recent years’ data (post-2022) limits our

ability to assess the long-term impact of UAR adoption. Moreover, the imbalance between control and

treated samples complicates the interpretation of our estimate as causal, as confounding factors could

bias the results. Nevertheless, we view our analysis as an initial step in this active area of research,

acknowledging substantial room for improvement. To enhance our estimation approach, we propose

leveraging the within-cities dataset and exploring spatial difference-in-differences estimators. Such

methods could provide deeper insights into the effects of UAR adoption, particularly concerning

potential negative spillovers on the city periphery. For instance, restrictions on driving in city centers

under UARs might lead to increased pollutant transit in surrounding areas, potentially impacting our

estimates. In summary, while our findings suggest a pattern of positive effects from UAR adoption,

further research efforts are needed to address data quality issues, improve estimation techniques, and

account for spatial dynamics in pollution exposure.
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A Appendix

B Descriptives

Table 6: Descriptive Statistics of Cities characteristics (between)

Mean Standard Deviation

Population 0.13 0.34
Experienced Density 0.15 0.15
Pollution Exposure 15.18 5.76
Temperature 8.23 3.38
Precipitation 3.61 1.22
Wind Speed 2.55 1.26
Ruggedness 14.84 14.54
Coast City 0.45 0.50
Water Distance 131.12 148.15
Coast Distance 40.57 46.55
Power Plant Distance 554.98 387.14

Notes: Yearly (2007-2021) averages and standard deviation for Al-
bania, Austria, Belgium, Bulgaria, Croatia, Cyprus, Czechia, Den-
mark, Estonia, Finland, France, Germany, Greece, Hungary, Ice-
land, Ireland, Italy, Latvia, Lithuania, Montenegro, Netherlands,
North Macedonia, Norway, Poland, Portugal, Romania, Serbia,
Slovakia, Slovenia, Spain, Sweden, Switzerland and United King-
dom . Population and experienced density is expressed in millions
of persons, temperature in Celsius degrees, precipitation in millim-
iters per day, wind speed in meters per second (in thousands) at a
10 meter height above the surface, and all distance variables are
expressed in kilometers (km).
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Table 7: Descriptive Statistics of Cities characteristics (within)

Mean Standard Deviation

Population 105.73 725.91
PM2.5 10.83 5.27
Temperature 6.62 4.50
Precipitation 0.00 0.00
Wind Speed 3.16 1.20
Ruggedness 16.66 20.90
Coast City 0.30 0.46
Water Distance 0.22 0.41
Power Plant Distance 0.15 0.36

Notes: Yearly (2007-2021) averages and standard deviation for Al-
bania, Austria, Belgium, Bulgaria, Croatia, Cyprus, Czechia, Den-
mark, Estonia, Finland, France, Germany, Greece, Hungary, Ice-
land, Ireland, Italy, Latvia, Lithuania, Montenegro, Netherlands,
North Macedonia, Norway, Poland, Portugal, Romania, Serbia,
Slovakia, Slovenia, Spain, Sweden, Switzerland and United King-
dom . Population and experienced density is expressed in millions
of persons, temperature in Celsius degrees, precipitation in millim-
iters per day, wind speed in meters per second (in thousands) at a
10 meter height above the surface, and all distance variables are
expressed in kilometers (km).
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Table 8: Descriptive Statistics of Cities instruments (between)

Mean Standard Deviation

Population in 100 A.D. 0.10 0.61
Population in 1000 A.D. 0.13 0.79
Population in 1500 A.D. 0.43 1.94
Population in 1800 A.D. 1.47 5.23
Highly productive porous aquifers 0.31 0.38
Low and moderately productive porous aquifers 0.22 0.34
Highly productive fissured aquifers 0.11 0.25
Low and moderately productive fissured aquifers 0.08 0.23
Locally aquiferous rocks, porous or fissured 0.18 0.31
Practically non-aquiferous rocks, porous or fissured 0.10 0.24

Notes: Population is expressed in millions of people. Aquifer variables measure the share
of land withn a city with such aquifer characteristic. Yearly (2007-2021) averages and stan-
dard deviation for Albania, Austria, Belgium, Bulgaria, Croatia, Cyprus, Czechia, Denmark,
Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithua-
nia, Montenegro, Netherlands, North Macedonia, Norway, Poland, Portugal, Romania, Ser-
bia, Slovakia, Slovenia, Spain, Sweden, Switzerland and United Kingdom . Population and
experienced density is expressed in millions of persons, temperature in Celsius degrees, pre-
cipitation in millimiters per day, wind speed in meters per second (in thousands) at a 10 meter
height above the surface, and all distance variables are expressed in kilometers (km).
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Table 9: Cities Soil Quality: Share of Land by Quality

Excess
Salts

Nutrient
availability

Nutrient
retention

Oxygen
availability

Rooting
conditions Toxicity Workability

Mainly
non-soil 0.02 0.03 0.02 0.02 0.02 0.02 0.02

Moderate
limitations 0.24 0.24 0.21 0.24 0.24 0.24 0.24

No or slight
limitations 0.48 0.50 0.57 0.48 0.48 0.48 0.48

Sever
limitations 0.13 0.13 0.09 0.13 0.13 0.13 0.13

Very severe
limitations 0.07 0.05 0.04 0.07 0.07 0.07 0.07

Notes: Yearly Averages (2007 - 2021) for Albania, Austria, Belgium, Bulgaria, Croatia, Cyprus, Czechia, Denmark,
Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Montenegro, Nether-
lands, North Macedonia, Norway, Poland, Portugal, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland
and United Kingdom .
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C Regressions

Table 10: Between OLS Estimates for PM2.5 Exposure

(1) (2) (3) (4) (5) (6)

Log (Pop.) 0.034∗∗∗ 0.032∗∗∗ 0.029∗∗∗

(0.003) (0.003) (0.001)

Log(Exp. Dens.) 0.017∗∗∗ 0.028∗∗∗ 0.046∗∗∗

(0.004) (0.004) (0.003)

Country - Year Yes Yes
Country Yes Yes
Year Yes Yes

All Controls No No Yes Yes Yes Yes

Notes: Signif. Codes: ***: 0.01, **: 0.05, *: 0.1. Clustered (country-year) standard-
errors in parentheses. Fixed Effects: Country-year, country and year. Temporal cov-
erage: 2007-2021. Countries: Albania, Austria, Belgium, Bulgaria, Croatia, Cyprus,
Czechia, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ire-
land, Italy, Latvia, Lithuania, Montenegro, Netherlands, North Macedonia, Norway,
Poland, Portugal, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland
and United Kingdom .
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Table 11: Within OLS Estimates for PM2.5 Exposure

(1) (2) (3)

Log (Pop.) 0.061∗∗∗ 0.069∗∗∗ 0.070∗∗∗

(3.45 × 10−5) (3.18 × 10−5) (0.001)

Country - Year Yes
Country Yes
Year Yes

Observations 47,852,785 47,852,785 47,852,785
Adjusted R2 0.061 0.221 0.324

Notes: Signif. Codes: ***: 0.01, **: 0.05, *: 0.1. Clustered
(country-year) standard-errors in parentheses. Fixed Effects:
Country-year, country and year. Temporal coverage: 2007-
2021. Countries: Albania, Austria, Belgium, Bulgaria, Croatia,
Cyprus, Czechia, Denmark, Estonia, Finland, France, Germany,
Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania,
Montenegro, Netherlands, North Macedonia, Norway, Poland,
Portugal, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden,
Switzerland and United Kingdom .
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Table 12: Between Cities PM2.5 Exposure IV Estimates with Population Density

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Log (Pop.) 0.041∗∗∗ 0.040∗∗∗ 0.041∗∗∗ 0.041∗∗∗ 0.035∗∗∗ 0.035∗∗∗ 0.033∗∗∗ 0.033∗∗∗ 0.122∗∗∗ 0.113∗∗∗ 0.114∗∗∗ 0.110∗∗∗

(0.003) (0.003) (0.003) (0.003) (0.003) (0.002) (0.002) (0.002) (0.033) (0.031) (0.027) (0.024)
Weather Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Geological Yes Yes Yes Yes Yes Yes Yes Yes Yes
Water Yes Yes Yes Yes Yes Yes
Power Plants Yes Yes Yes

Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

N 12,180 12,180 12,180 12,180 12,180 12,180 12,180 12,180 12,180 12,180 12,180 12,180
F-test (1st St.) 118.0 117.6 119.6 119.7 5,838.6 5,828.9 5,779.4 5,781.2 16.0 14.9 17.0 17.1

Log (Exp. Dens.) 0.051∗∗∗ 0.053∗∗∗ 0.054∗∗∗ 0.054∗∗∗ 0.061∗∗∗ 0.062∗∗∗ 0.060∗∗∗ 0.060∗∗∗ 0.018 0.052 0.062∗∗ 0.060∗∗

(0.004) (0.004) (0.003) (0.003) (0.004) (0.004) (0.004) (0.004) (0.032) (0.036) (0.031) (0.030)
Weather Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Geological Yes Yes Yes Yes Yes Yes Yes Yes Yes
Water Yes Yes Yes Yes Yes Yes
Power Plants Yes Yes Yes

Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

N 12,180 12,180 12,180 12,180 12,180 12,180 12,180 12,180 12,180 12,180 12,180 12,180
F-test (1st St.) 97.8 98.1 106.6 106.6 2,951.4 2,944.4 2,836.3 2,837.9 17.8 16.8 20.8 20.8

Notes: Signif. Codes: ***: 0.01, **: 0.05, *: 0.1. Clustered (country-year) standard-errors in parentheses. Fixed Effects: Country-year, country and year. Temporal
coverage: 2007-2021. Countries: Albania, Austria, Belgium, Bulgaria, Croatia, Cyprus, Czechia, Denmark, Estonia, Finland, France, Germany, Greece, Hungary,
Iceland, Ireland, Italy, Latvia, Lithuania, Montenegro, Netherlands, North Macedonia, Norway, Poland, Portugal, Romania, Serbia, Slovakia, Slovenia, Spain,
Sweden, Switzerland and United Kingdom . . Columns (1)-(4) first stage instrument is soil quality, columns (5)-(8) historical density (1800 AD) and columns
(9)-(12) aquifiers presence.
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Table 13: Robustness Check for Between Cities PM2.5 Exposure IV Estimates using Multiple
Soil Quality Specifications

(1) (2) (3) (4) (5) (6) (7)

Incrementally
Log (Exp. Dens) 0.070∗∗∗ 0.058∗∗∗ 0.056∗∗∗ 0.057∗∗∗ 0.058∗∗∗ 0.055∗∗∗ 0.054∗∗∗

(0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.003)
F-test (1st stage) 2.21 3.22 3.38 6.24 6.29 5.49

Separately
Log (Exp. Dens) 0.070∗∗∗ 0.061∗∗∗ 0.058∗∗∗ 0.062∗∗∗ 0.056∗∗∗ 0.044∗∗∗ 0.067∗∗∗

(0.004) (0.005) (0.005) (0.005) (0.005) (0.006) (0.004)
F-test (1st stage) 617.7 489.9 472.5 415.5 424.0 407.6 590.9

Weather Yes Yes Yes Yes Yes Yes Yes
Geological Yes Yes Yes Yes Yes Yes Yes
Water Yes Yes Yes Yes Yes Yes Yes
Power Plants Yes Yes Yes Yes Yes Yes Yes

Fixed-effects Yes Yes Yes Yes Yes Yes Yes

Observations 12,180 12,180 12,180 12,180 12,180 12,180 12,180
Columns 1 to 7 stand for different soil characteristics (ordered): toxicity, nutrient retention, nutrient availability,
workability, rooting conditions and excess of salts. Notes: Signif. Codes: ***: 0.01, **: 0.05, *: 0.1. Clustered
(country-year) standard-errors in parentheses. Fixed Effects: Country-year, country and year. Temporal cover-
age: 2007-2021. Countries: Albania, Austria, Belgium, Bulgaria, Croatia, Cyprus, Czechia, Denmark, Estonia,
Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Montenegro, Netherlands,
North Macedonia, Norway, Poland, Portugal, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland
and United Kingdom .
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Table 14: Robustness Check in Between Cities PM2.5 Exposure IV Estimates for City Size
adding City Area

No Polynomial Sum Population 2nd Degree Pol 3rd Degree Pol

City Area: NO
Log (Exp. Dens) 0.062∗∗∗ 0.045 0.008 -0.029

(0.003) (0.029) (0.027) (0.056)
F-test (1st stage) 424.5 27.6 33.7 14.5

City Area: YES
Log (Exp. Dens) 0.059∗ 0.034 0.021 0.072

(0.035) (0.024) (0.027) (0.078)
F-test (1st stage) 16.8 34.5 32.0 8.95

Weather Yes Yes Yes Yes
Geological Yes Yes Yes Yes
Water Yes Yes Yes Yes
Power Plants Yes Yes Yes Yes

Fixed Effects Yes Yes Yes Yes

Observations 12,180 12,180 12,180 12,180

Notes: Signif. Codes: ***: 0.01, **: 0.05, *: 0.1. Clustered (country-year) standard-errors in parentheses. Fixed
Effects: Country-year, country and year. Temporal coverage: 2007-2021. Countries: Albania, Austria, Belgium,
Bulgaria, Croatia, Cyprus, Czechia, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ire-
land, Italy, Latvia, Lithuania, Montenegro, Netherlands, North Macedonia, Norway, Poland, Portugal, Romania,
Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland and United Kingdom . . Column (1) shows adds no poly-
nomial terms of population, column (2) adds the sum of population of a given city, and the following columns
add a squared and cubic exponential terms to the sum of population to the control covariates.
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Table 15: Treatment Effect of Urban Access Regulation on PM2.5 Exposure

Austria Belgium France Germany Italy Latvia NL Norway Poland Spain Sweden UK
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

UAR -0.096 -0.002 0.046∗∗ -0.026∗∗∗ 0.023 -0.046∗∗∗ -0.085 0.021 0.049 -0.016 -0.046
(0.057) (0.007) (0.018) (0.004) (0.021) (0.006) (0.105) (0.015) (0.035) (0.019) (0.039)

Weather Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Geological Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Water Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Power Plants Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Observations 120 255 1,185 1,530 1,320 45 585 90 930 1,230 240 2,145
F-test, Log (Pop.) 133.9 1,498.6 1,183.4 1,922.3 1,980.5 -22.3 566.9 89.6 1,481.8 2,429.5 1,746.4 662.1

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1. Clustered (country-year) standard errors in parentheses. Fixed Effects:
Country-year, country and year. Temporal coverage: 2007-2021. Countries: Austria, Belgium, France, Germany,
Italy, Latvia, Netherlands, Norway, Poland, Spain, Sweden and United Kingdom
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D Figures

Figure 4: Country-Year Fixed Effects Coefficients
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Figure 5: Dynamic Difference-in-Differences by Country
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